Investigation of the CNO-Reaction $^{14}{\rm N}(p,\gamma)^{15}{\rm O}$ in Inverse Kinematics at Astrophysically Relevant Energies

E. Krmpotic¹, M. Fey¹, R. Kunz¹, J.W. Hammer¹, B. Pfeiffer², A.N. Ostrowski², J. Barth², K.-L. Kratz², H. Beer³, S. Harissopulos⁴ and G. Staudt⁵

¹Institut für Strahlenphysik, Universität Stuttgart, Germany; ²Institut für Kernchemie, Universität Mainz, Germany; ³Institut für Kernphysik, Forschungszentrum Karlsruhe, Germany; ⁴Demokritos, Athens, Greece; ⁵Physikalisches Institut, Universität Tübingen, Germany

The reaction $^{14}{\rm N}(p,\gamma)^{15}{\rm O}$ is the slowest within the CNO-cycle and its reaction rate is determining the energy production and the isotopic abundances of the involved elements. The excitation function of $^{14}{\rm N}(p,\gamma)^{15}{\rm O}$ is known only with large uncertainties [1, 2] below the lowest established resonance at ${\rm E}_{c.m.}=278\,{\rm keV}$. Therefore, new measurements with high sensitivity are required in that energy range. Furthermore, a group from TUNL [3] has reported a resonance at ${\rm E}_{c.m.}=118\,{\rm keV}$ (see Fig. 1)whereas another group [4] of the same institution did not find any indication of this resonance.

Missing resonances near the threshold could enhance the reaction rate by orders of magnitude and turn the $^{14}N(p,\gamma)^{15}O$ into a fast process.

Figure 1: Comparison of the S(E)-factor at 118 keV from Ref. [3] (TUNL) with the result from this measurement (red circle).

Therefore, we have investigated this reaction in inverse kinematics using the gas-target facility RHINOCEROS and an intense 14 N-beam of the Stuttgart DYNAMITRON in the energy range $E_{c.m.}=100-220\,\mathrm{keV}.$ The target gas was natural hydrogen, as well as hydrogen depleted with respect to deuterium. To obtain a sufficient target thickness of about 15 keV, the target pressure in the reaction chamber was set to 20 mbar and the beam of $30-80\,\mu\mathrm{A}$ was transmitting this chamber windowless. The background resulting from the residual deuterium content could be separated well. For further details, see Ref. [5].

In the energy range 119 to 207 keV, no resonance was detected (see, Figs. 1 and 2). An upper limit for the resonance strength at 118 kev of $\omega\gamma \leq 23$ neV instead of the value 5400 neV of Ref. [3] was obtained in accordance with the upper limit of 32 neV of Ref. [4]. In a recent paper of the authors of Ref. [3], no low lying resonance is reported anymore [6].

Figure 2: Comparison of the S(E)-factor obtained in this measurement (red circle) with values from Ref. [1] and the R-Matrix fit of Ref. [2].

Table 1: Measured S(E)-factors and cross-sections of [5]

E_{CM}	$\operatorname{S-factor}$	${ m cross-section}$
$[\mathrm{keV}]$	$[\mathrm{keV} \cdot \mathrm{b}]$	$[\mathrm{nb}]$
118	$0.96 \ (+2.31/-0.42)$	0.03 (+0.08/-0.01)
142	1.47 (+1.19/-0.72)	$0.21 \ (+0.17/-0.10)$
181	1.88 (+0.95/-0.52)	$1.53 \ (+0.76/-0.42)$
207	$3.26 \ (+1.40/-0.95)$	$6.46 \ (+2.76/\text{-}1.88)$

The results of this experiment are summarised in Tab. 1 and compared in Fig. 2 to values from literature [1] and an R-Matrix fit of [2]. The S(E)-factor determination in this low energy range will improve the R-matrix description and will allow to better extrapolate the excitation function down to the Gamow peak at 26 keV of astrophysical relevance. The non-observation of the 118 keV resonance confirms the main features of the standard models for stellar evolution [7].

References

- [1] U. Schröder et al., Nucl. Phys. A 467, 240 (1987).
- [2] C. Angulo et al., Nucl. Phys. A 656, 3 (1999).
- [3] S.O. Nelson et. al., Bull. Am. Phys. Soc. 46, 64 (2001).
- [4] R.C. Runkle et. al., Phys. Rev. C 66, 022801(R)(2002).
- [5] E. Krmpotic, Diploma Thesis, Stuttgart, 2003.
- [6] S.O. Nelson et al., Phys. Rev. C68, 065804 (2003).
- [7] J.N. Bahcall et al., Phys. Rev. Lett. **90**, 131301 (2003).