Investigation of the kinetics of the In(III)-DOTA complex formation by a γγ-perturbed angular correlation method

K.P. Zhernosekov², D.V. Filossofov¹, N.A. Korolev¹, A.F. Novgorodov¹, N.A. Lebedev¹, A. Velichkov¹, F Rösch²

¹Joint Institute of Nuclear Research, LNP, RUS-141980 Dubna, Russian Federation;

²Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, Germany

¹¹¹In complexes with the macrocyclic ligand DOTA and its derivatives represent promising radiopharmaceuticals, because the kinetic stability of these complexes is most relevant. In this work the perturbed angular $\gamma\gamma$ -correlation (PAC) method was used to investigate the kinetics of In(III)-DOTA complex formation in chloride solutions at room temperature.

The time-integrated angular correlation of cascade γ -rays is given by $W(\theta,\infty)=1+A_{22}G_2(\infty)Q_2P_2(\cos(\theta))+\dots$, where A_{ii} are the angular correlation coefficients, $P_i(\cos\theta)$ are the Legendre polynomials, Q_i -solid angle correlation factors and $G_i(\infty)$ are the time-integrated angular correlation (TIAC) perturbation factors. TIAC perturbation factors reflect information about hyperfine interactions due to the chemical environment and in that way about chemical speciation. For $[In(H_2O)_6]^{3+}$ ("liquid state") $G_2(\infty)$ is equal 1 while for $In(OH)_3(c)$ "solid" it is 0.2.

Measurements were performed on the four-detector PAC spectrometer (JINR) [1]. $A_2G_2(\infty)Q_2$ values were calculated as

$$A_{2}G_{2}(\infty)Q_{2} = 2\frac{N(180^{\circ}) - N(90^{\circ})}{N(180^{\circ}) + 2N(90^{\circ})}$$
(1)

where $N(180^\circ)$ and $N(90^\circ)$ are average counts of coincidences at 180° and 90° , respectively.

No-carrier-added ¹¹¹In ($T_{1/2} = 2.83$ d) was produced by irradiation of a natural silver target with 30 MeV α particles with subsequent separation and purification [2]. The activity of the probes was 100 kBq, the volume 0.5 ml. For the samples preparation polyethylene vials of 1.5 ml volume were used. Aqueous solutions of type NaCl/H⁺/DOTA with an overall ionic strength $\mu = 0.1$ and pH = 2-4 were used for the investigations, with constant concentration of DOTA of 10⁻⁵ M. Aliquots of the isotope in $2 \cdot 10^{-3}$ M HCl were added directly before measurements. After measurements, the pH of the samples was determined by means of a pre-calibrated glass electrode using standard buffer solutions. One of the obtained dependencies of $A_2G_2(\infty)Q_2$ -values on the time at room temperature, reflecting transition of the radionuclide form from the aqua complexes of indium to the In-DOTA-complexes at room temperature, is illustrated in Figure 1.

For trivalent cations Me³⁺ the thermodynamically stable complexes of type [Me-DOTA]⁻ are known to exist in aqueous solutions [3-4]. These species are forming through different deprotonated intermediates of Me³⁺-DOTA complexes:

 $Me^{3+} + [H_nDOTA]^{n-4} \leftrightarrow [MeH_{n-m}DOTA]^{n-m-1} + mH^+,$ (2) with subsequent deprotonation of intermediates:

$$[MeH_{n-m}DOTA]^{n-m-1} \leftrightarrow [MeDOTA]^{-} + (n-m)H^{+}, \quad (3)$$

At time t = 0, $A_2G_2(\infty)Q_2$ is equal to -0.13 corresponding to the aqua complex of indium. With time, it is approaching -0.1, thus reflecting formation of In(III)-DOTA complexes.

Fig.1. $A_2G_2(\infty)Q_2$ -values versus time, NaCl $\mu = 0.1$, room temperature. Fit of the experimental data (solid line Eq.(4)).

In the case of ¹¹¹In labelled compounds, the value of $A_2G_2(\infty)Q_2$ also depends on the size of the molecules and is sensitive for any $[InH_{n-m}DOTA]^{n-m-1}$ complexes forming. Our data are described for an excess of ligand:

$$\frac{d\sum_{n,m} [InH_{n-m}DOTA]^{n-m-1}}{dt} = k_{f,obs}[In^{3+}], \quad (4)$$

where $k_{f,obs}$ is observed for pseudo-first-order rate constants of In(III)-DOTA complex formation.

Fig.2. logk_{f,obs} (k_{f,obs}, [s⁻¹]) versus pH.

A linear dependency of $logk_{f,obs}$ on pH (Fig.2) with a proportionality coefficient 1.86, is observed in the range pH = 2 – 4. It can be interpreted on base of equilibrium (2). In³⁺ interacts mainly with H₂DOTA²⁻, whose concentration is proportional to [H⁺]⁻².

Acknowledgements This work was supported by grant of RFFI 03-03-32120a.

- [1] O.I. Kochetov et. al., P13-2002-265 JINR Dubna, 2002.
- [2] D.V. Filossofov et. al., Appl. Radiat. Isot. 55, 293 (2001).
- [3] É. Tóth et al., Inorg. Chem. 33, 4070 (1994).
- [4] L. Shuang, D.S. Edwards, Bioconjugate Chem. 12, 7 (2001).