1-PAC: First application of a one-detector gamma-gamma perturbed angular correlation technique for the determination of physical-chemical properties of radioeuropium species

DV Filossofov¹, K. Zhernosekov², NA Korolev¹, O.I.Kochetov¹, AF Novgorodov¹, NA Lebedev¹, F Rösch²

¹Joint Institute of Nuclear Research, DLNP, RUS-141980 Dubna, Russian Federation;

²Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, Germany

A new 1-PAC method (perturbed angular correlation measured using one detector only) was developed recently for ¹¹¹In [1]. In this article the approach is applied to the radiolanthanide ¹⁵⁴Eu. The emission used in our measurements on the 123 keV state of ¹⁵⁴Gd was the 1274 – 123 keV cascade. The relevant part of the decay scheme is illustrated in Fig.1.

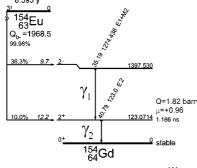


Fig.1. Relevant features of the decay scheme of ¹⁵⁴Eu

The time-integrated angular correlation of cascade (TIAC) γ -rays is given by W(θ_{∞}) = 1+ $A_{22}G_2(\infty)Q_2P_2(\cos\theta)$ +...,

 $[A_{ii}$ -angular correlation coefficients depending on spins and multipolarities of transitions; $P_i(\cos\theta)$ - Legendre polynomials; Q_i -solid angle correction factors; $G_i(\infty)$ -TIAC perturbation factor].

The TIAC W(θ,∞) of the ¹⁵⁴Eu cascade γ -ray coincidences are given in Fig.2. The solid and dotted lines represent the unperturbed ($G_2(\infty) = 1$) and perturbed angular correlation ($G_2(\infty) = 0.2$), respectively.

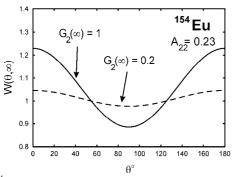


Fig.2. ¹⁵⁴Eu time-integrated angular correlation dependencies ($A_{44} \ll A_{22}$)

The γ -spectrum of ¹⁵⁴Eu (Fig. 3) consists of "mono peaks" (MP) corresponding to γ - and X-rays full-energy peaks and "summing peaks" (SP) corresponding to the summing energy of these radiations in different combinations. It was shown that the relative probability of recording of cascade γ -rays $R_{\gamma_n+\gamma_m}$ in SP at the individual values of A_{ii} , $G_i(\infty)$ and Q_i is equal to TIAC W(θ,∞) [1]:

$$R_{\gamma_{+\gamma_{-}}} = W_{\Lambda_{-}G,\Omega}^{\gamma_{n},\gamma_{m}} (\theta = 0^{\circ},\infty) \cdot (1)$$

Similar to ¹¹¹In, for ¹⁵⁴Eu $R_{\gamma_n+\gamma_m}$ can be obtained as:

$$R_{\gamma_1+\gamma_2} = N_{K_{\alpha,\beta}+\gamma_1} \cdot \frac{S_{\gamma_1+\gamma_2} \cdot S_{K_{\alpha,\beta}}}{S_{\gamma_2} \cdot S_{\gamma_1+K_{\alpha,\beta}}}, \qquad (2)$$

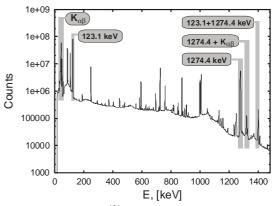


Fig.3. The γ -spectrum of ¹⁵⁴Eu obtained using an HPGe-detector

with $S_{\gamma n}$ – MP area, $S_{\gamma n+\gamma m}$ – SP area. For ¹⁵⁴Eu, the normalisation coefficient is:

$$N_{K_{\alpha,\beta}+\gamma i} = \frac{y_{e(K)}(\gamma_{2})}{\sum y_{e(K)}(\gamma_{i})} = 0.9241, \quad (3)$$

with $y_{e(K)}(\gamma_i)$ - the yields of electrons in the conversion process on the K-shell, corresponding to γ_i [2].

1.20 GBq of ¹⁵⁴Eu have been produced by a 737 h neutron irradiation of 1 mg europium oxide (99.71% of ¹⁵³Eu) at the BER II reactor (HMI, Berlin) at a flux of $2 \cdot 10^{14}$ n/cm² s. The ratio of ¹⁵⁵Eu/¹⁵⁴Eu activities was obtained to be 0.39. Due to the contribution of X-rays of ¹⁵⁵Eu the overall experimental normalisation coefficient is 0.6861.

1-PAC measurements were performed using polyethylene vials ("Eppendorf") of 2 ml volume. The activity of the samples was 50 kBq. The volume of each sample was 0.5 ml. The measurements were carried out with a coaxial HPGe detector of 250 cm³ volume, 64.8% relative efficiency (1332 keV). The source-detector distance was 42 mm from the detector surface. The obtained $R_{\gamma_n+\gamma_m}$ -values for different solutions and compounds of Eu(III) are presented in Tab.1:

Tab.1: $R_{\gamma_n+\gamma_m}$ -values of ¹⁵⁴Eu for different solutions and compounds

$\gamma_{n+\gamma_m}$ values of $\gamma_{n+\gamma_m}$ values of $\gamma_{n+\gamma_m}$		
Compounds	$R_{\gamma I+\gamma 2}$	σ
1M HClO ₄	1.1945	0.0043
0.01M HClO ₄	1.1946	0.0043
Eu(III)-DTPA	1.1519	0.0040
Eu(OH) ₃ (c)	1.1176	0.0041
EuF ₃ (c)	1.0964	0.0040

 $R_{\gamma_n+\gamma_m}$ -values, reflecting the different physical-chemical status of Eu(III), are maximum for Eu³⁺-cationic forms and decrease due to complex or solid phase formations. It is thus shown that this approach allows to study the physical-chemical properties of ¹⁵⁴Eu.

Acknowledgements : This work was supported by grant of RFFI 03-03-32120a. Acknowledgement is made to the crew of the research reactor BER II at the Berlin Hahn Meitner-Institut in Berlin for the radiation

[1] D. V. Filossofov et. al, Appl. Rad. and Isot. **57**, 437 (2002). [2] F. D. Sowby, Radionuclides transformations. Energy and Intensity of Emissions. ICRP Publication 38. (1983).