Search for the "Missing" α -Decay Branch in ²³⁹Cm

Z. Qin^{1,3}, D. Ackermann¹, W. Brüchle¹, F.P. Hessberger¹, E. Jäger¹, P. Kuusiniemi¹, G. Münzenberg¹, D. Nayak¹, E. Schimpf¹, M. Schädel¹, B. Schausten¹, A. Semchenkov¹ B. Sulignano^{1,2}, X.L. Wu^{1,3}, K. Eberhardt², J.V. Kratz², D. Liebe², P. Thörle², Yu. N. Novikov^{1, 4}

¹GSI, Darmstadt, Germany, ²Johannes Gutenberg-Universität, Mainz, Germany, ³IMP, Lanzhou, P.R. China, ⁴Petersburg Nuclear Physics Institute, Gatchina, Russia

Our first series of experiments yielded an upper limit of $3x10^{-5}$ for the α -decay branch of ²³⁹Cm [1,2] produced in the ${}^{12}C$ + ${}^{232}Th$ reaction. In these experiments only α spectra were evaluated as the γ -spectra were not clean enough to identify γ -lines from the decay of ²³⁹Cm or its daughter ²³⁹Am. Due to the use of 3.9 µm thick Cu catcher foils in a rotating catcher wheel behind a rotating target setup γ -spectra dominantly showed lines from the decay of ¹⁵³Sm, ^{150,151}Pm, and ^{147,149}Nd. Those homologous rare earth elements, produced in fission with cross sections of about 5 mb, were stopped in the Cu catcher but were only partly separated in the chemical procedure. ^{71,72}As and ⁶⁹Ge, produced in reactions of ¹²C with the Cu catcher, created an additional background.

In recent experiments 1 µm thick Cu foils produced by the GSI target laboratory were used in 120-150 mbar He in stationary target-catcher setups. These foils are sufficiently thick to stop all fusion products (0.3 µm range) but thin enough to let most fission products pass (3-6 µm range) and to minimize interaction of the 12 C beam with the Cu catcher. This provided a breakthrough and allowed identifying the 188 keV γ -line assigned to ²³⁹Cm [3] as well as γ -lines of the EC-decay daughter ²³⁹Am. ²³⁹Cm was produced in ($\leq 0.4 \ \mu A_{part}$) ¹²C + ²³²Th reactions. A faster and more efficient chemical separation procedure was applied [4]. Instead of two different elution media with 0.25M and 0.30M α -HIB the whole separation was conducted with 0.40M α -HIB at pH=4.6. Figure 1 shows improved elution curves from a cation exchange resin. Since this time all samples contained only small amounts of Sm and Pm, we added ²⁴⁴Cm as a tracer making the yield determination even more reliable. Overall yields varied between 75% and 90%.

Figure 1: Chromatogram with tracer elements. Drops 80 to 150 were selected as the Cm fraction.

We performed irradiations at 74, 70 and 66 MeV ¹²C energies in the middle of the 360 μ g/cm² Th targets. 74 MeV was selected because at this energy HIVAP calculations predict the highest ²³⁹Cm cross section. However, as we cannot exclude that α -events observed around 6.4 MeV stem from tailing of the 6.52 MeV α -lines of ²³⁸Cm, which is abundantly produced at this energy and which has a similar half-life, no attempt was made to determine an α -decay branch in ²³⁹Cm from this experiment.

70 MeV was selected because interfering ²³⁸Cm should be produced less by a factor of 80, whereas production of 239 Cm should drop by a factor of 1.7 only. Finally, 66 MeV was chosen because 240 Cm has its production maximum there. This allowed to check if events around 6.4 MeV can be produced by α - β -pileup. Though the ²⁴⁰Cm activity was higher than in the other experiments, not a single α could be detected between 6.35 and 7.0 MeV during the first day of measuring time. The 188 keV yline, assigned to ²³⁵Cm [3], was measured in experiments at 70 and 74 MeV irradiation energy. In addition, the 229 and 278 keV γ -lines of the daughter product ²³⁹Am were detected. Since at 70 MeV irradiation energy HIVAP predicts a factor of 2000 lower cross section for ²³⁹Am as compared to ²³⁹Cm, we feel safe to attribute all measured ²³⁹Am to ²³⁹Cm daughters. As the absolute intensity of the ^{239}Cm 188 keV $\gamma\text{-line}$ is not known, we started our analysis with the assumption of 100% abundance. Based on this we calculated how much ²³⁹Am is produced in the ²³⁹Cm EC-decay. As the experimentally observed amount of ²³⁹Am at 70 MeV is a factor of 2.8±0.8 higher, we concluded that the 188 keV γ -line has an intensity of about 36%. The error (90% c.i.) includes uncertainties in the half-life of ²³⁹Cm between 2 and 4 h and in the Cm-Am separation yield between 30% and 70%. The 70 MeV experiments yielded five α -decays between 6.36 and 6.45 MeV within the first 10 h of measurement. An average background of 0.625 events, determined in a long background measurement without a sample, was subtracted (note that the background with a sample could be somewhat higher). This yields a ratio of α -decay to EC decay of $\leq 1.9 \times 10^{-5}$ (90% c.i.) and $\leq 1.4 \times 10^{-5}$ (68.3% c.i.) for the decay of ²³⁹Cm.

References

- [1] Z. Qin et al., GSI Scientific Report 2004, p.190
- [2] Z. Qin et al., GSI Scientific Report 2005, p.197
- [3] E. Browne, Nucl. Data Sheets 98, 665 (2003).
- [4] Z. Qin et al., GSI Scientific Report 2004, p.191.