Two-proton fragmentation of ²⁰Mg and ¹⁷Ne studied by fragment tracking with micro-strip detectors at FRS*

I. Mukha^{1,2,#}, K. Sümmerer³, L. Acosta⁴, M.A.G. Alvarez¹; E. Casarejos⁵; A. Chatillon³; D. Cortina Gil⁵; J. Espino¹; A. Fomichev⁶; J.E. Garcia-Ramos⁴; H. Geissel³; J. Gomez-Camacho¹; L. Grigorenko⁶; J. Hoffmann³, O. Kiselev^{3,7}; A. Korsheninnikov²; N. Kurz³; Yu. Litvinov³; I. Martel⁴; C. Nociforo³; W. Ott³; M. Pfützner⁸; C. Rodriguez⁵; E. Roeckl³; M. Stanoiu³; H. Weick³; P. Woods⁹
¹University of Sevilla, Spain; ²Kurchatov Institute, Moscow, Russia; ³GSI, Darmstadt, Germany; ⁴University of Huelva, Spain; ⁵University of Santiago de Compostela, Spain; ⁶JINR, Dubna, Russia; ⁷University of Mainz, Germany; ⁸University of Warsaw, Poland; ⁹University of Edinburgh, UK.

We report preliminary results for the fragmentation reactions ${}^{20}Mg \rightarrow {}^{18}Ne+2p$ and ${}^{17}Ne \rightarrow {}^{15}O+2p$. The secondary ${}^{20}Mg$ and ${}^{17}Ne$ beams were produced by impinging a 591 A MeV ${}^{24}Mg$ primary beam with 5•10⁹ ions/spill on a 4 g/cm² ⁹Be target at the fragment separator FRS. The average intensities of the resulting 400 A MeV ${}^{20}Mg$ and ${}^{17}Ne$ secondary beams at the mid-plane of the FRS amounted to 400 and 800 ions/spill, respectively. Special ion-optical settings were applied: the first half of the FRS was tuned to an achromatic mode using a wedgeshaped degrader, while its second half was set for high acceptance in angle and momentum. A 6x6 cm² DSSD detector with 32x32 strips was used to track the secondary ions onto a 2 g/cm² ⁹Be secondary target positioned at the mid-plane of the FRS.

Downstream from the reaction target, the break-up products of ²⁰Mg and ¹⁷Ne were tracked by a newly developed detector array [1] consisting of four large-area (7x4 cm²), 0.3 mm thick silicon micro-strip detectors with a pitch of 0.1 mm. The detector performance is reported in [2]. The detectors were used to measure energy loss and position of hits corresponding to the ejection of two protons and a heavy-ion residue, allowing the reconstruction of all fragment trajectories, their reaction vertices, angular distributions of the reaction products or proton-proton (p-p) correlations. This required careful relative alignment of the detectors with the help of reconstructed tracks; the achieved accuracy was 100 μ m for protons and 15 μ m for ¹⁵O or ¹⁸Ne.

The reaction vertices were reconstructed with an RMS uncertainty of 0.2 mm along the beam direction. Fig. 1 shows the profile obtained by demanding triple $p+p+^{15}O$ events that correspond to fragmentation of ¹⁷Ne in the 11 mm thick secondary target. Events outside this area are due to a background caused by events with delta electrons which mock up protons and thus lead to false triple-coincidence events.

Figure 2: Proton-proton correlations observed for the ²⁰Mg→¹⁸Ne+p+p reaction. The cluster of events at low p-p and intermediate pp-Ne relative angles reflects a strong p-p final-state interaction.

Fig. 2 displays the angular p-p correlations derived from the analysis of ${}^{20}Mg \rightarrow {}^{18}Ne+p+p$ events. A strong pp interaction corresponding to a 'di-proton' where two protons are emitted together with a relative orbital angular momentum of zero should manifest itself by small p-p and intermediate pp-Ne relative angles; the clustering of events in Fig. 2 indicates such an attraction. Similar behaviour is observed in the fragmentation ${}^{17}Ne \rightarrow {}^{15}O+p+p$ which is in-line with the previous works [3,4].

References

- [1] http://dpnc.unige.ch/ams/GSItracker/www.
- [2] M. Stanoiu *et al.*, contribution to this report.
- [3] T. Zerguerras et al., Eur. Phys. J. A 20 (2004) 389.
- [4] L.Grigorenko et al., Phys. Rev. C 71 (2005) 051604.

^{*} Work supported by EU, EURONS, contract No. 506065, and FPA-05958 (MEC, Spain). #mukha@us.es