SYNTHESIS, ¹⁸F-LABELING AND EVALUATION OF α_5 -SUBTYPE-SELECTIVE GABA_A-RECEPTOR-LIGANDS

T. Capito¹, F. Debus², M. Piel¹, H. Lüddens², F. Rösch¹

¹Institute of Nuclear Chemistry, University of Mainz and ²Department of Psychiatry, University of Mainz

Introduction: The visualization and quantification of the α_5 -subunit of the GABA_A-receptor by PET may allow a better diagnosis and therapy control of miscellaneous neurological disorders, e.g. Alzheimer s disease (AD) and posttraumatic stress disorder (PTSD). α_5 -Subtype-selective GABA_A-receptor ligands also provide an opportunity to give a deeper understanding of the important processes of learning and memory. 7,8,9,10-tetrahydro-(7,10-ethano)-1,2,4triazolo[3,4-a]phthalazine^[1] seems to be a promising lead structure for those new ligands, especially for PET tracers, which allow non-invasive measurement of ligand biodistribution and accumulation kinetics related to GABA_A-receptor studies in the living brain.

Experimental: A novel series of 6-(6-fluoropyridine-2-yl)methyloxy-7,8,9,10-tetrahydro-(7,10ethano)-1,2,4-triazolo[3,4-a]phthalazine derivatives TC 07-TC12 were synthesized in a multi-step organic synthesis [Fig.1].

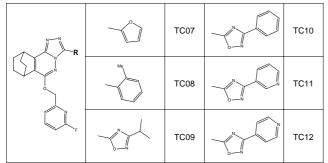


Fig.1: Synthesized derivatives TC07-TC12

The reference substances were evaluated in receptor binding assays and by autoradiography of [³H]Ro15-4513 binding against increasing concentrations of the synthesized derivatives. The corresponding precursors for ¹⁸F-syntheses were built in a multi-step-synthesis. The subsequent ¹⁸Flabeling was achieved by direct ¹⁸F-fluorination via nucleophilic substitution using [¹⁸F]fluoride.

Results and Discussion: For the fluoro-reference compounds, both binding assays and autoradiographic data showed nanomolar affinities (K_i) and a very high selectivity for the α_5 -subunit of the GABA_A-receptor. Autoradiographic data indicate a dose dependent selective displacement of the radioligand from α_5 -subunit containing GABA_A-Receptors. Figure 2 shows the displacement of [³H]Ro15-4513 with increasing concentrations of compound TC12. For the most relevant compounds, the ¹⁸F-labeling reactions were optimized in terms of temperature, time of reaction and precursor concentration.

Conclusion: The experiments identified the synthesized substances to be potent substrates concerning the α_5 -subtype of the GABA_A-receptor. Based on the obtained results so far, *ex vivo* and *in vivo* small-animal-studies using PET will be carried out next. Thus, new and highly selective PET-ligands for imaging the α_5 -subunit in cell studies and in *ex vivo* and *in vivo* small-animal-studies using PET might soon be available.

References:

^[1]L.J. Street et al., J Med Chem 47 (2004), 3642-57

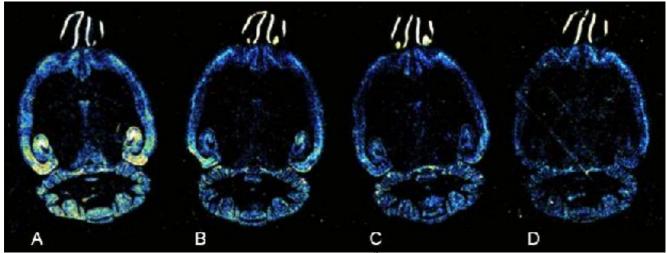


Fig.2: Autoradiography of [³H]Ro 15-4513 A: total binding of radioligand, B: 20 nM TC12, C: 200 nM TC12, D: 2000 nM TC12