Separation of ⁴⁴Ti and ^{nat}Sc

D.V. Filosofov², N.S. Loktionova¹, F. Rösch¹ ¹ Institute of Nuclear Chemistry, University of Mainz, Mainz, Germany ² Joint Institute of Nuclear Research, DLNP, 141980 Dubna, Russian Federation

Introduction: ⁴⁴Ti / ⁴⁴Sc radionuclide generators are of interest for molecular imaging. The 3.92 hours half-life of ⁴⁴Sc and the high positron branching of 94% may stimulate the application of ⁴⁴Sc labelled PET radiopharmaceuticals [1,2]. However, both ⁴⁴Ti production and ⁴⁴Ti / ⁴⁴Sc generator design represent challenges for basic radiochemistry. Recently, the production of 5 mCi of ⁴⁴Ti was described following ^{nat}Sc(p,2n) nuclear reactions [3]. This paper covers the radiochemical purification of ⁴⁴Ti prior to the development of ⁴⁴Ti / ⁴⁴Sc radionuclide generators. Basically, high separation factors for gramm-amounts of scandium target material and for chemical and radionuclidic impurities are required.

Experimental: 1.5 g irradiated scandium were dissolved in 18 ml of 2 M HCl. For the initial separation two aliquots A - 44 Ti in 9 ml 2 M HCl (742.5 MBq) and B – 44 Ti in 9 ml 2 M HCl (740.5 MBq) were prepared. These solutions contained about 10 MBq of 46 Sc (T $\frac{1}{2}$ = 82.8 d) as produced via neutron capture on ${}^{45}Sc$ induced by the neutrons created within the ${}^{nat}Sc(p,2n){}^{44}Ti$ process. For cation exchange chromatography, a large column (H=350 mm, S=2 cm², V₀=35 ml) of AG-50Wx8, 200-400 mesh (H^+ -form) was washed with 1.514 M HCl and 50 ml H₂O. Probe A was brought in the column, followed by 7.5 ml H₂O and 8 ml 1 M HCl consecutive. After that, probe B was brought in the column, then 9 ml H₂O and 17.5 ml 1 M HCl. The column was washed with 45 ml 1 M HCl, 30 ml 2 M HCl, 160 ml 3 M HCl, 200 ml 0.5 M H₂C₂O₄ consecutively. Table 1 shows the activities of 44 Ti and 44 Sc measured in the different fractions using different detectors: Curie-meter (activity 1) and γ -ray spectroscopy MOPS 41 (activity 2).

The second separation, i.e. purification was performed using a similar column (H=360 mm, S=2 cm², V₀=36 ml) with AG-50Wx8, 200-400 mesh (H⁺-form). The column was washed with 1 1 4 M HCl and 50 ml H₂O. The probe N 5 from the first separation was brought in the column, then 170 ml H₂O, 45 ml 1 M HCl, 180 ml 2 M HCl and 190 ml 4 M HCl consecutive. Measurements have been performed similar to the protocol used for the first separation.

Results and Discussion: The chromatographic profiles of the two separations are summarized in Tables 1 and 2.

Table 1: initial ^{44}Ti / ^{nat}Sc separation, AG-50Wx8, 200-400 mesh (H+-form)

Ν	Solution	V	Activity [MBq]			
		[ml]	Curie-meter		γ-spectroscopy	
			1 st day	2 nd day	⁴⁴ Ti	⁴⁶ Sc
1	1 M HCl	40	0.281	0.219	0	0
2	1 M HCl	45	1.268	1.182	0	0
3	1 M HCl	45	0.552	0.448	0	0
4	2 M HCl	47	1.556	1.816	0.18	0
5	3 M HCl	48	1321	1485	204.35	2.56
6	3 M HCl	49	81.37	21.30	0.100	2.36
7	3 M HCl	41	34.05	10.33	0.410	1.14
8	3 M HCl	18	11.80	3.931	0.007	0.280
9	$H_2C_2O_4$	32	19.04	9.385	~0.020	~0.150
10	$H_2C_2O_4$	47	3.382	0.953	0.025	0.109
11	$H_2C_2O_4$	37	2.373	0.568	0.008	0.077
12	$H_2C_2O_4$	39	-	0.600	0.008	0.850

Table 2. sec	ond ⁴⁴ Ti /	natSc	purification,	AG-50Wx8,	200-400	mesh
(H ⁺ -form)						

Ν	Solution	V	Activity [MBq]			
		[ml]	Curie-meter		γ-spectroscopy	
			1 st day	2 nd day	⁴⁴ Ti	⁴⁶ Sc
13	1 M HCl	30	0.051	0.003		
14	1 M HCl	30	0.078	0.012		
15	1 M HCl	30	0.088	0.020		
16	1 M HCl	30	0.117	0.026		
17	1 M HCl	30	0.117	0.029		
18	1 M HCl	30	0.125	0.029		
19	1 M HCl	30	0.125	0.027		
20	1 M HCl	30	0.117	0.020		
21	2 M HCl	30	0.110	0.016		
22	2 M HCl	30	2.417	3.152	0.54	
23	2 M HCl	30	802.0	1102	188.42	
24	2 M HCl	30	221.2	298.5	51.04	
25	2 M HCl	30	19.72	18.56	0.06	
26	2 M HCl	30	1.205	0.422	0.004	
27	4 M HCl	30	2.208	0.092	0.003	0.0004
28	4 M HCl	30	137.0	7.342		1.017
29	4 M HCl	30	66.46	4.436		0.614
30	4 M HCl	30	34.51	2.330		0.323
31	4 M HCl	30	18.36	1.006		0.140
32	4 M HCl	30	12.82	0.512		0.071
33	4 M HCl	30	7.771	0.258		0.036

Conclusions: About 99.9% of the ⁴⁴Ti have been isolated in a 48 ml fraction of 2 M HCl. As expected, the scandium separation was not complete with about 400 mg scandium still present in the ⁴⁴Ti fraction. About 99.6% of the ⁴⁴Ti activity have been recovered following cation exchange purification of the no-carrier-added radionuclide from about 1.5 g of a macroscopic scandium target. The second chromatography provided a more complete separation with a separation factor of about 10⁵, i.e. less than 10⁻³ % of the initial scandium still remaining in the ⁴⁴Ti fraction. The final content of scandium is about 15 µg.

However, further purification occurred to be useful. The fractions # 23 and 24 thus were further purified using anion exchange chromatography, as described later, cf. [4].

References:

- F Rösch, Radionuklid-Generatorsysteme für die PET. Der Nuklearmediziner 27 (2004) 226-235
- [2] F Rösch, FF (Russ) Knapp. Radionuclide Generators. In: A Vértes, S Nagy, Z Klencsár, F Rösch (eds.), *Handbook of Nuclear Chemistry* – Vol. 4, pp 81-118, 2003, Kluwer Academic Publishers, The Netherlands
- [3] Alenitzky YuG, Novgorodov AF, Skripnik AV, Filosofov DV, Skripnik AV, Kaplun VG, Suzikov AG, Eliseev IA, F Rösch, ⁴⁴Ti: Investigation of target preparation, irradiation and yields in the ⁴⁵Sc(p,2n) process, 2005
- [4] D.V. Filosofov, N.S. Loktionova, F. Rösch, Purification of ⁴⁴Ti, 2007