Preparation and evaluation of pilot ⁴⁴ Ti /⁴⁴ Sc radionuclide generators

D.V. Filosofov², N.S. Loktionova¹, F. Rösch¹

¹ Institute of Nuclear Chemistry, University of Mainz, Mainz, Germany

² Joint Institute of Nuclear Research, DLNP, 141980 Dubna, Russian Federation

Introduction:

In previous reports, best conditions for efficient separations and for the design of $^{44}\text{Ti}/^{44}\text{Sc}$ radionuclide generators have been determined in terms of distribution coefficients depending on the composition of HCl / H₂C₂O₄ mixtures. Using AG-1x8 resins, optimum K_d values for the HCl / oxalic acid mixtures of 0.2 M HCl and 0.1 M H₂C₂O₄, have been obtained [1].

Consequently, the performance of model generators needs to be investigated. This report is on the construction and evaluation of low-activity generators using two different modes of elution.

Experimental:

Two columns made of PEEK (diameter 3 mm, length 40 mm) have been prepared in the institute's workshop. Both columns were filled with AG-1x8, 200-400 mesh, in Br⁻-form.

The columns were washed with 5 ml 12 M HCl and 5 ml H₂O two times. Finally, they were washed with 5 ml 0.1 M $H_2C_2O_4$.

A sample of ⁴⁴Ti was evaporated to dryness and taken up with 420 μ l of 0.1 M H₂C₂O₄. The solution obtained was divided into two parts (and used for generators Nr. 2 and Nr. 3). To each probe 2 ml 0.1 M H₂C₂O₄ were added. The two ⁴⁴Ti fractions of 300 kBq activity each probes were transferred to the generators Nr. 2 and Nr. 3.

Generator 2 was eluted using 10 ml of 0.1 M $H_2C_2O_4/$ 0.1 M HCl solutions, while generator Nr. 3 was eluted with 0.1 M $H_2C_2O_4/$ 0.2 M HCl solutions in a standard procedure.

Elution of both generators was carried out 3 times a week.

Results and Discussion:

Figure 1 illustrates the yield of ${}^{44}Sc$ obtained for the increasing number of elutions for both generator types. While the generator No. 2 design guarantees a constant level of ${}^{44}Sc$ elution, the elution of ${}^{44}Sc$ in the case of Nr. 3 is decreasing with about the 10th elution. This corresponds to an increasing breakthrough of ${}^{44}Ti$ in generator Nr. 2 as shown in Fig. 2. The elution strategy of pilot generator Nr. 2 results in an increasing breakthrough of ${}^{44}Ti$, which results in a 50% desorption of ${}^{44}Ti$ after about 30 elutions, and an almost complete release of ${}^{44}Ti$ after 50 elutions.

In contrast, the breakthrough of 44 Ti in the case of the type elution (Nr. 3) scheme is negligible for the first 10 elutions, and is increasing only slightly in the following 40 elutions. The maximum breakthrough of 44 Ti is about 0.2 %.

Fig.1. Yield of 44 Sc (γ -spectroscopy) for increasing number of elutions for Sc2 and Sc3 elution modi

Fig. 2. Breakthrough of 44 Ti (γ -spectroscopy) for increasing number of elutions for Ti2 and Ti3 elution modi

Conclusions: In terms of long-term stability of ⁴⁴Ti/⁴⁴Sc generators, adequate generator elutions are necessary.

In optimum constellations, the elution yield of 44 Sc is always high and constant with 85-90%.

References:

 D.V. Filosofov, N.S. Loktionova, F. Rösch, Determination of K_d values of ⁴⁴Ti and ⁴⁴Sc in HCl/H₂C₂O₄ solution of various concentrations, 2007