Preparation of a 5 mCi prototype ⁴⁴Ti/⁴⁴Sc radionuclide generator

D.V. Filosofov², N.S. Loktionova¹, F. Rösch¹

¹ Institute of Nuclear Chemistry, University of Mainz, Mainz, Germany ² Joint Institute of Nuclear Research, DLNP, 141980 Dubna, Russian Federation

Introduction: For preparation of ⁴⁴Ti/⁴⁴Sc radionuclide generators, several radiochemical criteria are relevant, such as effective separation strategies providing high ⁴⁴Sc yields and low ⁴⁴Ti breakthrough, high long-term stability, and type of Sc eluates useful for subsequent labelling reactions (i.e. low volume, low pH, high purity etc.) [1,2]. In previous studies, the distribution coefficients of Ti(IV) and Sc(III) have been determined for AG1x8 anion exchange resins and HCl / oxalic acid mixtures [3].

Further studies reported on the strategy of "direct" and "reverse" elution strategies [4] with the conclusion, that "reverse" type washing steps after each elution using the same composition of 0.2 M HCl / 0.1 M oxalic acid mixtures indicate the approach to long-term stability of ⁴⁴Ti/⁴⁴Sc generators. In addition, periodical washing using 0.2 M HCl / 0.1 M oxalic acid mixtures allows for focusing the ⁴⁴Ti distribution on the ion exchange column [5].

Experimental: For the generator, a column (H=150 mm, D=3 mm, V₀=0.55 ml) was made of PEEK and filled with anionit AG-1×8 (200-400 mesh, Br⁻form). The column was washed with 20 ml 12 M HCl and 10 ml H₂O. Finally, it was washed with 10 ml 0.1 M H₂C₂O₄. The probes with purified ⁴⁴Ti (5 mCi) [6] were dried and dissolved in 20 ml 0.1 M H₂C₂O₄. This solution was brought into the generator and the generator was washed with 0.005 M H₂C₂O₄ / 0.07 M HCl mixture in "reverse" direction. Two days later, the generator was eluted for first time using 20 ml of 0.005 M H₂C₂O₄ / 0.07 M HCl. Aliquots were selected for each 2 ml. One week later, the activity of ⁴⁴Ti in these samples were analysed by means of g-spectrometry.

Results and Discussion: The profile of ⁴⁴Sc elution is shown in Fig. 1. The content of ⁴⁴Ti is given in Fig. 2.

Fig. 1. Elution profile of 44 Sc (Curie-meter measurements, relative units) for the first three elutions. Each fraction contains 2 ml.

Fig. 2. Breakthrough of 44 Ti (γ -spectroscopy) for the first three elutions. Each fraction contains 2 ml.

Fig. 3. The scheme of "reverse" Ti/Sc-generator, I-500 ml bottle with 0.005 M $H_2C_2O_4$ / 0.07 M HCl mixture II – generator; III – 20 ml bottle; IV – product vial; V – Syringe

Conclusions: After second elution as we can see from fig. 1 the yield of 44 Sc is higher and from fig. 2 the yield of 44 Ti is lower. After few elutions the profile becomes better.

References:

- F Rösch, Radionuklid-Generatorsysteme für die PET. Der Nuklearmediziner 27 (2004) 226-235
- [2] F Rösch, FF (Russ) Knapp. Radionuclide Generators. In: A Vértes, S Nagy, Z Klencsár, F Rösch (eds.), *Handbook of Nuclear Chemistry* – Vol. 4, pp 81-118, 2003, Kluwer Academic Publishers, The Netherlands
- [3] D.V. Filosofov, N.S. Loktionova, F. Rösch, Determination of K_d values of ⁴⁴ Ti and ⁴⁴ Sc in HCl/H₂C₂O₄ solution of various concentrations, 2007
- [4] D.V. Filosofov, N.S. Loktionova, F. Rösch, Preparation and evaluation of pilot ⁴⁴ Ti /⁴⁴ Sc radionuclide generators, 2007
- [5] D.V. Filosofov, N.S. Loktionova, F. Rösch, Determination of K_d values of ⁴⁴Ti and ⁴⁴Sc in HCl/H₂C₂O₄ solution of various concentrations, 2007
- [6] D.V. Filosofov, N.S. Loktionova, F. Rösch, Purification of ⁴⁴Ti, 2007