Post-processing of ⁴⁴Ti/⁴⁴Sc-radionuclide-generator for medical application

N. Loktionova¹, D.V. Filosofov³, M. Pruszynski², F. Rösch¹

¹ Institute of Nuclear Chemistry, University of Mainz, Mainz, Germany; ² Institute of Nuclear Chemistry and Technology, Warszawa, Poland; ³ Joint Institute of Nuclear Research, DLNP, 141980 Dubna, Russian Federation

Introduction: The ⁴⁴Ti/⁴⁴Sc generator provides cyclotronindependent access to positron-emitting ⁴⁴Sc for application in PET radiopharmaceuticals. The ⁴⁴Sc solution that can be obtained from generator is too diluted and too acidic for use in direct labeling procedures. The aim of this work was to design and to analyse the performance of a ⁴⁴Ti/⁴⁴Sc radionuclide generator for medical application.

Experimental: Post-elution processing studies were performed to reduce the volume and acidity of ⁴⁴Sc-eluate from ⁴⁴Ti/⁴⁴Sc generator and to reduce amount of ⁴⁴Ti in the final product for the syntheses of ⁴⁴Sc-labelled radiopharmaceuticals. It was developed, similar to the one developed for the ⁶⁸Ge/⁶⁸Ga radionuclide generator [1].

The ⁴⁴Ti/⁴⁴Sc generator was eluted with 20 ml mixture of 0.005 M $H_2C_2O_4/0.07$ M HCl. The retention of the ⁴⁴Sc eluate was checked on micro-chromatography columns, filled with 80 mg of cation-exchange resin AG W50x8 (200-400 mesh, H⁺-form). The columns were dried by passing air through them to remove the rest of eluate, then washed by 3 ml H₂O and dried once again. Several solutions at various volumes and concentrations were used to elute ⁴⁴Sc from the columns.

Finally micro-chromatography column (~2 mm inner diameter, ~5 mm length) was prepared using two 3-way valves filled with 53 mg of cationit. The ⁴⁴Ti/⁴⁴Sc radionuclide generator was connected to the valves via tubing. The ⁴⁴Sc-eluate mixture was transferred on-line within 20 min through the column. Subsequently, the column was washed by 3 ml H₂O and dried by air. Then, 3 ml of 0.25 M ammonium acetate, acidified to pH = 4.0 by drop-wise addition of acetic acid were passed slowly through the column and the ⁴⁴Sc eluate was collected in a 10 ml glass vial.

The aliquots of consecutive fractions were collected and measured according to the activity of 44 Sc and 44 Ti using dose calibrator and γ -spectroscopy.

Results: To reduce the volume of the ⁴⁴Sc eluate, a 3-valves cartridge with 53 mg of cationic resin AG W50x8 was connected with the generator on-line. Recently, the eluate passes through the cartridge and ⁴⁴Sc is adsorbed on the cationic resin, from which it can be eluted by 3 ml of 0.25 M ammonium acetate, pH=4.0. This solution is ready for labelling with peptides and other biomolecules. Finally, the cartridge is reconditioned by washing with 1 ml of 4 M HCl and 1 ml of water. The scheme of the generator together with post-elution processing is presented on Figure 1.

Conclusions: On-line post-elution processing of ⁴⁴Ti/⁴⁴Sc-radionoclede generator is performed on the small cationic

cartridge. In the final point, around 160 MBq of 44 Sc is obtained daily in 3 ml 0.25 M ammonium acetate buffer (pH=4.0). This solution can be used for labeling of biomolecules.

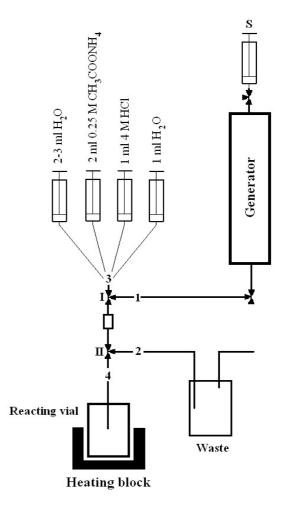


Figure 1. Scheme of the ⁴⁴Ti/⁴⁴Sc generator together with post-elution processing of ⁴⁴Sc-eluates and generator-associated syntheses of ⁴⁴Sc-labeled compounds.

References:

K.P. Zhernosekov, D.V. Filosofov, R.P. Baum, P. Aschoff, H. Bihl, A.A. Razbash, M. Jahn, M. Jennewein, F. Roesch, Procesing of generator-produced ⁶⁸Ga for medical application, J. Nucl. Med. (2007), 48, 1741 – 1748.

Acknowledgement:

This work was financially supported by DFG grant RO 985/18.