Synthesis and *in vitro* Affinities of Various MDL 100907 Derivatives as Potential ¹⁸F-Radioligands for 5-HT_{2A} Receptor Imaging with PET

Herth MM^{1,*} Kramer V,¹ Piel, M¹, Palner M,² Riss PJ,¹ Knudsen GM,² Rösch F¹

1) Institute of Nuclear Chemistry Johannes Gutenberg-University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany

2) Center for Integrated Molecular Brain Imaging and University of Copenhagen, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark

Objectives:

Radiolabelled piperidine derivatives such as ¹¹C]MDL 100907 and ¹⁸F]altanserin have played an important role in diagnosing malfunction in the serotonergic neurotransmission. Concerning molecular imaging, the advantage of $[^{18}F]$ altanserin (**b**) over $\begin{bmatrix} {}^{11}C \end{bmatrix}$ MDL 100907 (**a**) is the possibility to perform equilibrium scans lasting several hours and to transport the tracer to other facilities based on the 110 minute half-life of ¹⁸F-fluorine. A drawback of [¹⁸F]altanserin is its rapid and extensive metabolism. Four metabolites are formed in humans that cross the blood-brain-barrier, whereas metabolites of [¹¹C]MDL 100907 do not enter the brain to any larger extent. The aim of this study was to synthesize a ligand combining the reported better selectivity and in vivo stability of MDL 100907 as compared to altanserin and the superior isotopic properties of an ¹⁸F-label as compared to an ¹¹C-label.¹

Methods:

A variety of novel piperidine MDL 100907 derivatives, possible to label with ¹⁸F-fluorine, were synthesized to improve molecular imaging properties of [¹¹C]MDL 100907. Their *in vitro* affinities to a broad spectrum of neuroreceptors and their lipophilicities were determined and compared to the clinically used reference compounds MDL 100907 and altanserin.

Results:

The novel compounds MA-1 and (R)-MH.MZ show K_i -values in the nanomolar range towards the 5-HT_{2A} receptor and insignificant binding to other 5-HT receptor subtypes or receptors. Interestingly, compounds MA-1, MH.MZ and (R)-MH.MZ provide a receptor selectivity profile similar to MDL 100907. These compounds could possibly be preferable antagonistic ¹⁸F-tracers for visualisation of the 5-HT_{2A} receptor status. Medium affine compounds (e.g. VK-1) were synthesized and have K_i values between 30 and 120 nM (table 1).

All promising compounds show logP values between 2 and 3, i.e.

within range of those for the established radiotracers altanserin and MDL 100907. The novel compounds MA-1 and (R)-MH.MZ thus appear to be promising high affine and selective tracers of 18 F-labelled analogues for 5-HT_{2A} imaging with PET.³

Table 1. Receptor Binding Affinities of promising 5- HT_{2A} ligands

Verbindung	$K_i [nM]$
MH.MZ	9.00 ± 0.10
MDL 100907	2.10 ± 0.13
(R)-MH.MZ	0.72 ± 0.12
MA-1	3.24±1.23

Conclusion:

A series of novel MDL 100907 derivatives containing a fluorine atom were synthesized and evaluated for their *in vitro* behaviour. Structure-Activity Relationships (SAR) studies suggested that the tested compounds had affinities to the 5-HT_{2A} receptor in the nanomolar range.

References:

- ¹ Herth, M.M. et al. (2008); Total synthesis and evaluation of [¹⁸F]MHMZ, Bioorg. Med. Chem. Lett. 1515-1519
- ² Huang et al. (1999), An Efficient Synthesis of the Precursors of [¹¹C]MDL 100907 Labeled in Two Specific Positions, J. Labelled Cpd. 42: 949 – 957
- ³ Herth et al. (2009), Synthesis and in vitro afffinites of various MDL 100907 derivatives as potential 18F-radioligands for 5-HT_{2A} imaging with PET, Bioorg. Med. Chem. (submitted)