Radiolabeling and evaluation of MDL 100,907 derivates as potential ¹⁸Fradioligands to determine changes in endogenous serotonin

Kramer V¹, Herth M¹, Palner M², Knudsen G², Lüddens H³, F Rösch

¹Institute of Nuclear Chemistry, Johannes Gutenberg-University, Mainz, Germany ²Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark ³Department of Psychiatry, Clinical Research Group, Mainz, Germany

Objectives: PET ligands that are able to detect changes in the concentration of endogenous serotonin are a valuable tool to study the pathophysiology of depressions and the effects of its pharmacotherapies¹. The purpose of this study was to explore the effect of paroxetineinduced increased serotonin levels on the binding of the 5-HT_{2A} antagonist (R)-[¹⁸F]MH.MZ and its nitroderivate (R)-[¹⁸F]VK1.MZ.

Methods: The *in vitro*-affinity for the inactive fluorocompound (R)-VK1.MZ was determined in a [³H]MDL 100,907 binding assay (Tab 1).

Table 1: In vitro affinities of the synthesized ligand to the $\rm 5HT_{2A}\mbox{-}receptor$

compound	K _i [nM]
(R)-MH.MZ	0.7
(R)-VK1.MZ	12

Both radioligands were labeled with ¹⁸F by fluoroethylation of the corresponding phenolic precursors using 2-[¹⁸F]fluorethyltosylate² (Fig 1).

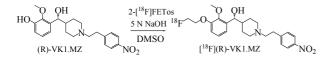


Figure 1: Radiosynthesis of (R)-[¹⁸F]VK1.MZ

The radiolabeling procedure for $(R)-[^{18}F]VK1.MZ$ was optimized due to time, temperature and solvent (Fig 2).

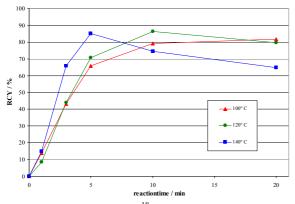


Figure 2: Radiosynthesis of [¹⁸F](R)-VK1.MZ

Purification was carried out by HPLC and cartridge separation. Competition studies with serotonin were performed by autoradiography³ and a first μ PET-study was carried out.

Results: Both ligands demonstrate good affinities in the nanomolar range and a high selectivity for the 5-HT_{2A} receptor. Optimization of the radiochemical reaction conditions for (R)-VK1.MZ gave radiochemical yields of about 85 % for the fluoroethylation after 5 minutes. The final formulation took no longer than 80 minutes and provided the labeled compound in a radiochemical yield of 50 % with a purity > 96 % and a typical specific activity of about 10 GBq/µmol. Autoradiographic studies of (R)-[¹⁸F]MH.MZ showed excellent binding properties (BP = 8.3), whereas (R)-[¹⁸F]VK1.MZ showed a lower specific binding (BP = 2.4) (Fig 2). This is probably due to the decreased affinity. For both ligands the specific binding could be reduced significantly by the addition of 100 nM serotonin.

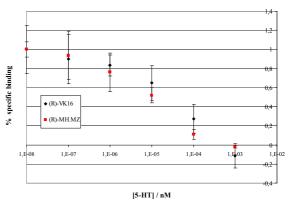


Figure 2: Competition study with serotonin

Conclusion: The reaction parameters for the radiolabeling of (R)-[¹⁸F]VK1.MZ were optimized. (R)-[¹⁸F]MH.MZ and (R)-[¹⁸F]VK1.MZ could be obtained as an injectable solution in good radiochemical yields. Both tracers showed good binding properties *in vitro* and their specific binding could be reduced by the addition of physiological amounts of serotonin.

Outlook: μ PET-studies with male rats under the influence of paroxetine are being performed in the close future using (R)-[¹⁸F]MH.MZ due to its higher BP.

Literatur:

- Giovacchini G, Lang L, Ma Y, Herscovitch P, Eckelman WC, Carson RE; (2005); Neuroimage 28, 238
- [2] Bauman A, Piel M, Schirrmacher R, Rösch F; (2003); Tetrahedron Letters 44/51, 9165
- [3] Herth MM, Debus F, Piel M, Palner M, Knudsen GM, Lüddens H, Rösch F; (2008); Bioorg. Med. Chem. Lett. 18, 1515