[⁶⁸Ga]HHDPD: A potential imaging agent for tumours and arteriosclerotic plaques

F. Zoller, P. Riss, F. Roesch

¹Institut für Kernchemie, Johannes Gutenberg-Universität, D-55128 Mainz, Germany

Introduction: Generator-derived gallium-68 is highly relevant for molecular imaging strategies by means of position emission tomography (PET). The trivalent radiometal is used in a variety of current radiopharmaceutical developments. In this context, an effective post-processing of the generator-eluted gallium-68 plays a key role for following labelling procedures. This study reports a convenient method for ⁶⁸Ga-labelling of lipophilic porphyrin derivatives under anhydrous conditions using solid-phase derived gallium-68-acetylacetonate $({}^{68}Ga(acac)_3)$ in a microwaveenhanced radiosynthesis. Porphyrin derivatives accumulate in tumour tissue and atheromatous plaques and are established in photodynamic therapy (PDT).

Experimental: ⁶⁸Ge/⁶⁸Ga-radionuclide generators utilizing TiO₂ to adsorb ⁶⁸Ge(IV) were used. The initial aqueous eluate was transfered online onto a cationic exchange resin to quantitatively absorb ⁶⁸Ga. From this resin, ⁶⁸Ga was eluted with different acetone–based, non-aqueous solvent systems providing n.c.a. ⁶⁸Ga(acac)₃ as labelling synthon. ⁶⁸Ga-labelling of porphyrin derivatives was performed in chloroform in a focused microwave synthesis system.

Results: More than 95% of the initially eluted ⁶⁸Ga was eluted form the cationic exchange resin with only 600 μ l of a 98% acetone / 2% acaetylacetone mixture. Two different porphyrin derivatives, the simple symmetric meso-tetraphenyl-porphyrin and (3-(1-hydroxyheptyl)deuteroporphyrin dimethylester (HHDPD, FZ.MZ), were labelled in yields of >90% within 5 minutes using the ⁶⁸Ga(acac)₃ and diverse coligands in chloroform. Radiochemical purities of >95% were achieved by solid-phase extraction.

Conclusion: Two lipophilic porphyrin derivatives were rapidly labelled in high yields in a microwave-enhanced radiosynthesis. ⁶⁸Ga-labelling was achieved using solid-phase derived ⁶⁸Ga(acac)₃ as synthon under anhydrous conditions. Gallium complexation inside the macrocyclic tetrapyrrol-system was realised by diverse co-ligands. The novel ⁶⁸Ga-labelled porphyrin compounds are currently under investigation concerning their medical potential. Despite the synthesis of ⁶⁸Ga-porphyrin complexes, however, the procedure of online synthesis of ⁶⁸Ga(acac)₃ as a synthon for labelling reactions under non-aqueous conditions may be of general interest.

Scheme 1: Tetragonal pyramidal coordination of the five-coordinate metalloporphyrin (L_x : axial co-ligand, M*: trivalent metal ion)

Scheme 2: Structure of $[^{68}Ga]Tpp$ and $[^{68}Ga]HHDPD$ (L_x = phenol, gentisic acid.

References

- Rösch, F., and Knapp, F. (2003) in *Handbook of* Nuclear Chemistry (Vertes, A., Nagy, S., Klenscar, Z., and Rösch, F., Eds.) pp 81-117, Kluwer Academic Publishers, Dordrecht
- [2] Zhernosekov, K. P., Filosofov, D. V., Baum, R. P., Aschoff, P., Bihl, H., Razbash, A. A., Jahn, M., Jennewein, M., and Rosch, F. *Journal of Nuclear Medicine* 2007, 48, 1741-8
- [3] Zoller, F., Riss, P., Montforts, F.-P., Roesch, F., *Bioconjugate Chemistry* **2008**, submitted

Acknowledgement

The authors are grateful to the Fonds der chemischen Industrie.