Elution of ⁶⁸Ge/⁶⁸Ga radionuclide generators in "reverse" mode

N. S. Loktionova, F. Rösch

Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, D-55128 Mainz, Germany

Introduction: The ⁶⁸Ge/⁶⁸Ga radionuclide generator provides an excellent source of positron emitting ⁶⁸Ga for the routine synthesis and application of ⁶⁸Ga-labeled compounds using PET. The eluates show a breakthrough of ⁶⁸Ge of 10⁻³ to 10⁻²%, increasing with time or usage frequency, and impurities such as stable Zn^{II} generated by the decay of ⁶⁸Ga, Ti^{IV} a constituent of the ⁶⁸Ge adsorption column material and Fe^{III} as a general impurity.

Recently the "reverse" mode of elution for the ⁴⁴Ti/⁴⁴Sc radionuclide generator was investigated [1]. Here we report the evaluation and comparative study of two different modes of elution for the ⁶⁸Ge/⁶⁸Ga generator.

Experimental: A commercial generator based on a TiO_2 phase adsorbing ${}^{68}Ge^{IV}$ was obtained from Cyclotron Co. Ltd. In the present study, a 300 MBqdevice was used. The generator was washed with 10 ml 0.1 M HCl solution during one week in one direction ("direct elution"). In the following week, the generator was washed with 10 ml 0.1 M HCl solution the same way (direct elution before "reverse"). However, immediately after this primary elution of ⁶⁸Ga, the generator was washed with 10 ml of 0.1 N HCl in the opposite direction ("reverse elution").. Elution of the generator was carried out three times a day. Samples were collected in 15 ml plastic vials and measured for their ⁶⁸Ga and ⁶⁸Ge content. The absolute radioactivity of ⁶⁸Ga samples was accomplished in a dose calibrator M2316 (Messelektronik Dresden GmbH). The absolute radio-activity of 68Ge samples was measured by y-spectro-metry using a high-purity germanium (HPGe) detector three days after elution.

Results and Discussion: Figure 1 illustrates the yield of ⁶⁸Ga obtained from an increasing number of elutions of both elution modes. Figure 2 illustrates the breakthrough of ⁶⁸Ge observed in an increasing number of elutions of both elution modes.

The general yield of 68 Ga did not notably change from day to day and neither within the two weeks (Fig. 1). Expectedly, in the reverse elution the 68 Ga yield was always low, representing about 10% of the initially eluted 68 Ga.

Over a period of one week and 15 elution processes, the yield of ⁶⁸Ga in the direct elution and in the direct elution of the reverse mode did not significantly differ from each other.

The reverse elution washes ⁶⁸Ge, which is localized on the generator column close to its breakthrough, back to a higher and "safer" position on the TiO₂-matrix. This should reduce the breakthrough for the next elution. Over the 15 reverse elution processes, the ⁶⁸Ge-breakthrough in a direct elution (24 ± 4 %) following a reverse elution (16 ± 3 %) was thus reduced by 33 %.

On the other hand, there was an about ten times higher "breakthrough" of ⁶⁸Ge in the reverse elution, which indicates for a strong wash-off of the ⁶⁸Ge-loading at

the top of the generator column. However, the use of the "reverse" fraction from previous elution for the next direct elution should recover most of this ⁶⁸Ge-loss as it has been shown for the ⁴⁴Ti/⁴⁴Sc generator by the work of Filosofov et al. [1]. Alternatively, a sufficient amount of adsorbent could be installed on top of the original generator column.

Fig.1. Yield of ⁶⁸Ga in the various elution modi.

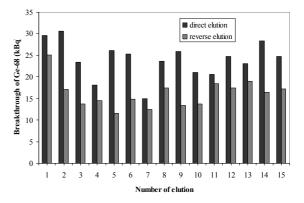


Fig. 2. Breakthrough of ⁶⁸Ge in "direct" and "reverse" elution mode.

Conclusions: In this study of 15 comparative elution processes, a benefit of reduced breakthrough in the "reverse" elution mode for the 68 Ge/ 68 Ga generator of 33 % could be observed.

An extended study over a longer period of time including more elution processes and a reuse of the reverse elution fraction should show a beneficial effect of the reverse mode of elution also for the ⁶⁸Ge/⁶⁸Ga generator.

In case of the ⁴⁴Ti/⁴⁴Sc generator an increased yield and an improved life-time of the generator has been shown over more than 50 elution processes. Furthermore, a reuse of the reverse elution fraction was applied.

References:

 D. V. Filosofov, N.S. Loktionova, F. Rösch, A ⁴⁴Ti/⁴⁴Sc radionuclide generator for potential application of ⁴⁴Sc-based PET-radiopharmaceuticals; Radiochimica Acta 98, 149-156 (2010)