Charge Exchange of a 10 keV Rubidium Ion Beam with Potassium Vapor

K. Minamisono¹, Ch. Geppert^{2, 3}, N. Frömmgen², M. Hammen², A. Klose^{1, 4}, J. Krämer², A. Krieger²,

C. D. P. Levy⁵, P. F. Mantica^{1, 4}, W. Nörtershäuser^{2, 3}, S. Vinnikova^{1, 4}

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

²Institute für Kernchemie, Johannes Gutenberg Universität Mainz, Mainz D-55128, Germany

⁶GSI Helmholtzzentrum für Schwerionenforschung mbH, Darmstadt D-64291, Germany

⁴Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA

⁵TRIUMF, Vancouver, BC V6T 2A3, Canada

Introduction: The BEam COoler and LAser spectroscopy (BECOLA) facility [1] is being installed at NSCL at Michigan State University. Collinear laser spectroscopy experiments will be performed on low energy radioisotopes available at NSCL. Ion beams can be neutralized in a charge exchange cell (CEC) shown in Fig. 1, originally developed at TRIUMF. Tests of the CEC were performed at the TRIGA-Laser experiment at the University of Mainz.

Experimental: A 10 keV rubidium (Rb) ion beam was produced using the TRIGA-Laser offline ion source and passed through potassium vapor (K) in the CEC. The neutral component of the Rb beam was measured using a Faraday cup at the end of the beam line as a function of the CEC heater temperature, which was varied to control the vapor pressure of K. The laser system was an external-cavity single-mode diode laser and the laser light was collinearly overlapped with the Rb beam. The velocity of the Rb beam was adjusted by applying a bias voltage to the CEC to tune the Doppler-shifted laser frequency into resonance with the D₂ transition. Resonance fluorescence was detected with a photomultiplier at the optical detection region after the CEC.

Results: The neutralization efficiency through the CEC is shown in Fig. 2. Complete neutralization of the Rb ion beam was observed around 300 °C. The solid curve is the best fit of a function, $1 - e^{-n\sigma l}$, where *n* is the K vapor density, σ is the cross section and *l* is the effective interaction length. Analysis is underway to extract σ . A typical fluorescence signal is shown in Fig. 3. The solid curve is the best fit of a multi-component Voigt function. The dashed curves represent each component, separated by 1.6 V to account for inelastic collisions with excitations [2] of ground state K (Rb) electrons to the 4p (5p) first excited state in K (Rb) and/or electron capture into the 5p first excited state in Rb. Two side peaks caused by these processes were observed at 314°C, where neutralization efficiency is 100 %. Fluorescence spectra were also measured at other temperatures. The inelastic contribution to the resonance line width becomes insignificant below 250°C. Such a detailed knowledge on the line shape is important to precisely determine the center wave length of the main peak, from which physics information is extracted.

Acknowledgement

This work is supported by the US National Science Foundation, Grant PHY06-06007 and the Helmholtz Association, contract VH-NG-148.

References

[1] <u>http://groups.nscl.msu.edu/becola/</u>

[2] N. Bendali et al., J. Phys. B19, 233 (1986).

Fig. 1. The charge exchange cell tested at TRIGA-LASER

Fig. 2. Neutralization efficiency of a 10 keV Rb⁺ beam with K vapor.

Fig. 3. Typical fluorescence signal of neutral Rb atoms in the ${}^{2}S_{1/2}$ $F = 3 \rightarrow {}^{2}P_{3/2}F = 4$ transition at 314°C.