Labeling of HPMA based polymers via click chemistry methodology

D. Moderegger, F. Rösch

Institut für Kernchemie, Johannes Gutenberg-Universität, D-55128 Mainz, Germany

Introduction: During the last decades the development of polymer based drug targeting systems for medical diagnosis and treatment has been of increasing interest in pharmaceutical research.¹ For medical applications sufficient knowledge about the in vivo behavior is required. Here, positron emission tomography (PET) can be used to visualize the in vivo fate of potential drug targeting systems in living organisms. With the development of versatile labeling strategies e.g. via small ¹⁸F-labeling synthons, various polymeric systems can be visualized without interfering structure and properties of the macromolecular systems. The "click" reaction between terminal alkynes and azides ideally complies with the requirements of fluorine-18 labeling and was used for the labeling of an alkyne functionalized HPMA-based model polymer under mild conditions.

Experimental: For the labeling of alkyne functionalized polymers the ¹⁸F-labeling precursor 2-(2-(2-azido-ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (**3**) was synthesized in 2 steps beginning with 2,2'-ethylenedioxydiethanol (**1**) (cf. Figure 1).

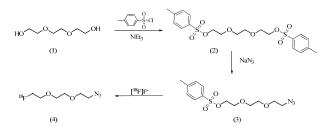


Figure 1. Synthesis and ¹⁸F-labeling of the azide functionalized labeling precursor **3** towards the new ¹⁸F-synthon **4**.

Fluorine-18 labeling of **3** was performed using a solution of 3,3 mg (10 μ mol) precursor, 15 mg Kryptofix[®] 222, 15 μ L 1M K₂CO₃-solution in 1 mL of MeCN at 100 °C. Purification of the synthon **4** was accomplished using HPLC (Luna RP18, MeCN:H₂O 50:50, flow: 4 mL/min, t_R: 6,5 min). After diluting the HPLC product fraction with water, **4** was loaded on a C18-SepPak cartridge and eluted with 0.8 mL of DMSO.

For labeling of the alkyne functionalized polymer via click chemistry (cf. Figure 2), the eluted solution of **4** was added to a mixture of 100μ L 0.6M sodium ascorbate solution, 50 μ L 0.4 M CuSO₄-solution, 50 μ L H₂O and 2 mg of polymer **5** and the reaction mixture was stirred at RT.

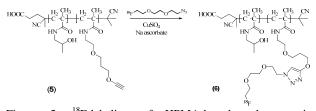


Figure 2. ¹⁸F-labeling of HPMA-based polymer via Cu(I)catalysed 1,2,3-triazole formation with the ¹⁸F-synthon **4**.

The ¹⁸F-labeled polymer (**6**) was separated using size exclusion chromatography (HiTrapTM Desalting Column, Sephadex G-25 Superfine, flow: 0.5 mL/min, pure water).

Results: Nucleophilic fluorination of synthon (3) was achieved in up to 80% RCY within 10 min (cf fig. 3).

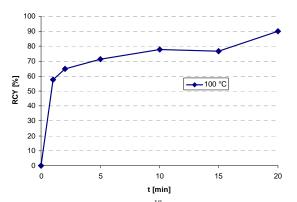


Figure 3. RCY of **4** from 18 F-labeling using Kryptofix[®] 222/K₂CO₃ in MeCN at 100 °C.

Purification of the azide labeling synthon **4** was accomplished successfully via RP-HPLC and SPE and labeling of an alkyne functionalized HPMA-based model polymer could be performed using click chemistry methodology in 60% RCY within 40 min (cf Figure 4).

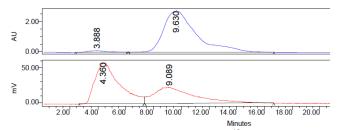


Figure 4. Size exclusion chromatogram of the ¹⁸F-labeled polymer (6). top: UV-chromatogram. bottom: radioactive chromatogram with labeled polymer at t_R :4.3 min and free 4 at t_R :9.1 min.

References

R. Duncan, Nat. Rev. Cancer 2006, 6 (9), 688-701.
T. L. Ross, Curr. Radiopharmaceuticals 2010, 3 (3), 202-223.

Acknowledgement

As recipient of a fellowship the author would like to thank the funding of the Excellence Initiative (DFG/GSC 266). The authors gratefully thank Ms. Mareli Allmeroth for the synthesis of the alkyne functionalized HPMA-based polymer.