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Principles and problems of phase-shift analysis 

J E BOWCOCK AND HUGH BURKHARDT 

Department of Mathematical Physics, University of Birmingham, Birmingham B15 2TT 

Abstract 

Phase-shift analysis is the extraction of the scattering amplitude from the scattering 
cross section and other experimentally observable quantities such as polarizations. 
When only elastic scattering is energetically allowed, unitarity determines the un- 
observable angle-dependent complex phase of the scattering amplitude with, at most, 
only a few discrete alternative solutions. Above the inelastic threshold the unitarity 
constraint on a scattering amplitude is only an inequality and a continuum of different 
amplitudes will correspond to exactly the same observables. In  practical cases these 
differences can be important. Extra theoretical input of a dynamical nature can, in 
principle, remove the continuum ambiguity but, because numerical analytic continu- 
ation is always involved, data of absurd accuracy are required. Thus unique answers 
can, in practice, only be found by introducing further model-dependent assumptions ; 
it is important to recognize this and ensure that these assumptions are as dynamically 
plausible as possible. Recent results using the structure of the amplitude in both 
kinematic variables suggest that fixed-t dispersion relations might form a sound basis 
for an inelastic phase-shift analysis. 

This review was completed in July 1975. 

Rep. Prog. Phys. 1975 38 1099-1141 
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1. Introduction 

Phase-shift analysis of scattering data in high-energy physics has made a very 
important contribution to the picture we have developed of hadrons and their strong 
interactions. In particular the detailed spectrum of hadron states and the pattern of 
their decay rates, which fits in so well with that expected from the quark model, was 
largely derived from phase-shift analysis. The results of this work and the theoretical 
ideas that it has confirmed have been extensively reviewed, for example by Donnachie 
(1973). Phase-shift analysis is also extensively employed in other areas of nuclear 
physics. 

Here we shall be concerned with understanding the process of phase-shift analysis 
itself, the extraction of the scattering amplitude from the experimental data. We shall 
see that, once inelastic processes are energetically allowed, phase-shift analysis is far 
from being a straightforward, mathematically reliable process; indeed, there is no 
compelling reason to believe that the resultant amplitudes are correct. The circum- 
stantial evidence discussed above suggests that they are roughly right, however, and we 
shall comment on the dynamical implications of this success. It is worth emphasizing 
that a totally reliable way of finding the amplitude from the data is of immense value, 
since the amplitude is much easier to study from a dynamical point of view than the 
observables, which all contain complicated interference effects; for example, the 
dispersion relation approach to dynamics is based on the analytic properties of the 
amplitudes. 

Phase-shift analysis is generally used to mean the process of obtaining the (complex) 
scattering amplitude from the (zeal) scattering cross sections, differential or total. If 
the particles involved in the scattering have spin, there will be more than one ampli- 
tude and, correspondingly, other experimental observables such as polarizations which 
are sufficient to determine the magnitudes and relative phases of the various ampli- 
tudes. Thus the most important problem, namely the determination of the 
absolute, angle-dependent phase of the scattering amplitudes, is essentially the same as 
in the spinless case, so we shall leave the complications of spin until $7. 

Since the scattering amplitude f is a complex number and the differential cross 
section 

is real, it is not obvious that the information exists to fix f. We shall examine what 
theoretical assumptions are usually made and how far they leave ambiguities in the 
resultant amplitude. From (1.1) it is clear that it is the phase off which is undeter- 
mined, so that for any function t$ of energy and angle which is real in the whole physical 
region 

gives exactly the same cross section. 
It should be remarked that this phase uncertainty t$(z) has nothing to do with the 

unobservable overall phase of wavefunctions in quantum mechanics ; the asymptotic 
wavefunction at large distances from the scattering centre may be written 

da/dS2= If12 (1 * 1) 

J= ei$f (1 *2) 

etkr 
#( x) x eikax +f( e) - , Y - f o o  

r 
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so the phase of the scattering amplitude is the relative phase of the incident and 
scattered waves. This phase has observable consequences in situations where multiple 
scattering occurs, such as scattering from deuterons or complex nuclei. Unfortunately, 
the internal dynamics of the scattering systems is not understood sufficiently well to 
make the extraction of the phase possible in practice, except within the framework of 
approximate models such as that of Glauber (1959). 

Goldberger et al (1963) discuss the possibility of scattering correlation measure- 
ments, using a phase reconstruction method like that devised by Hanbury-Brown and 
Twiss (1956) in radio astronomy, but it is not a practical possibility. So we shall here 
regard the overall phase of the amplitude as unmeasurable and consider in detail how 
far it is fixed by the theoretical constraints on the amplitude and the measurement of its 
modulus-this is the problem of phase-shift analysis. 

1.1.  Variables and amplitudes 

First we shall briefly define our notation for the kinematic variables and scattering 
amplitudes-more detailed derivations can be found in many places, including 
Burkhardt (1969). We shall be largely concerned with the quantum scattering of two 
spinless particles with a total energy E and momenta q in the centre-of-mass system. 
They scatter through the angle e from a direction q to a direction q’, and we write 

x= cos e =  q.q’/qq’. (1 .3 )  
However, we shall also need to discuss those general properties of scattering 

amplitudes which are most simply expressed in terms of the relativistically invariant 
Mandelstam variables s, t and U ;  these are just the squares of the three possible sums of 
pairs of 4-momenta of the scattering particles in figure 1, taking momentum conserva- 
tion into account and counting incoming momenta as positive. 

Figure 1. Kinematics of a scattering process-note signs chosen. 

In  the simple case of all equal masses they are related to the centre-of-mass variables 
by 

s = (pr +p2)2 = ( -p, -p4)2  = 4m2 + 4q2 = 4n22 + 4q’2 

t 3 [p1-  ( - p 4 ) ] 2  = (p2 +p3)2  = - 2q2( 1 - 2) (1.4) 
. = [ P I - (  - P 3 ) ] 2 = ( p 2 + $ 4 ) 2 =  -2q2(1 +x) 

so that 
42 = &(s - &2)1/2 
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For general mass values one finds 

Of course, all the masses can only be different in an inelastic scattering process. 
Only two of the kinematic variables can be independent and, using the mass condition 
~ $ 2  = mi2, we find 

4 

i= 1 
s + t + u =  m12. (1 8) 

The  variables, with this constraint, are plotted for equal masses in figure 2 in tri- 
angular coordinates; the value of each variable is its perpendicular distance from its 
axis. The  physical regions are shown shaded. 

Is" -I /zs= -I 

Figure 2. Physical regions of crossing-related processes in triangular coordinates. 

The crossing-symmetric amplitude A(s, t ,  U) describes each of the following 
scattering processes in its appropriate physical region, which for equal masses are 

l + 2 + 4 + 3  s>4m2, t and u<O 

1 + 3 + 2 + 4  u>4m2, sand  t<0 .  

The time-reversed processes, and also those where each particle N is replaced by its 
own antiparticle i'V, are also given by the same amplitude in the same region. This 
amplitude is related to the differential cross section for 1 + 2 --f 4 + 3 by 

. 1 + T + 2 + 3  t>4m2, s and u < O  (1.9) 

a-; do - q' I 7 s  2 A l  (1.10) 
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and so to the usual non-relativistic amplitude f by 
f=-=-.. F 2A 

4 4 5  
(1.11) 

The quantity F is introduced for convenience because of its simple unitarity properties. 

1.2. Ideal phase-shift analysis 

Let us look first at the theoretical assumptions that lie behind an ideal phase-shift 
analysis and try to see how they may enable us to find a complex number (the ampli- 
tude) from a real one (the cross section) at each centre-of-mass energy E and scattering 
angle 8. First, for completeness, we must mention Lorentz invariance (L)  under 
translations in space and time, rotations and boosts of velocity, which tells us that the 
amplitude for the scattering of two particles will depend on only two variables, such as 
energy and scattering angle, and not on the position, orientation or velocity of the 
whole system. Secondly, one explicitly uses the short-range nature of the forces in 
strong interactions of hadrons (I?). Normally we expand the amplitude in ‘partial 
waves’ of definite angular momentum I 

m 
(1.12) 

where x = cos 8. The existence of a lightest particle, mass p, which can be ‘exchanged’ 
in scattering gives rise to a Yukawa potential contribution of the form 

(1.13) 

Since the classical angular momentum I at radius Y is I=qr, where 4 is the relative 
momentum, it is not surprising that for large 1 

(1.14) 

so that the high partial waves are very small. The exponential behaviour is rigorously 
true, though the argument is not ! 

In  practical phase-shift analyses the partial-wave amplitudes fi are usually assumed 
to be zero above some cut-off I= L 

f1= 0, I >  L. (1.15) 
As we shall see, this apparently innocent assumption conceals the true ambiguity 
situation since (1.2) implies an infinite number of partial waves, consistent with the 
true condition (1.14) but not with (1.15). 

Mathematically, the exchanged systems which give rise to scattering appear as 
singularities of the scattering amplitude in the complex x plane at the unphysical 
values 

to z= 1 +-- 
2q2 

(1.16) 

where t=to is the square of the mass of the exchanged system. A discrete particle 
exchange gives an isolated pole, while a multi-particle system, which can have a 
continuous range of masses, gives a cut stretching over the corresponding range of x, 
given by (1.16). The  cuts are as shown in figure 3, 
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The word ‘exchange’ is used in two different senses here. All forces in quantum 
scattering may be ascribed to the exchange of particles-in the simplest case the 
Coulomb interaction is photon exchange; this is the sense we have used so far, figure 
4(a). Nuclear physicists use the phrase ‘exchange forces’ to describe interactions in 
which the two scattered particles exchange their identities in the final state, so that for 
example, figure 4(b), forward nucleon exchange in pion-nucleon scattering looks like 

Y ,  

-I $ 1  

Figure 3. Singularities of the scattering amplitude in z = cos 0. 

backward scattering; such processes give rise to singularities at positive U and so for 
real a - 1 from equation (1,6), but their effects on the phase-shift ambiguity situation 
are qualitatively similar to the t singularities so we shall not discuss them further 
explicitly. 

The third important theoretical constraint is that provided by unitarity ( U ) ,  which 
is the statement of probability flux conservation. It is not surprising that it is much 
more powerful in the elastic region, where only elastic scattering is allowed and can be 
fully observed, than at higher energies where some of the probability flux goes in 
inelastic channels. Elastic unitarity requires 

(1.17) Fz - exp (&) sin &(E) - exp (232) - 1 
Q 4 2iq 

so that for each partial wave the complex amplitude fz is, in fact, determined by a single 
real number 61; it is plausible that the real cross section contains enough information 
to fix the 62. In  fact, we shall see in the next section that there may still be a limited 
number of discrete alternative amplitudes. In  the inelastic region unitarity is much 
less powerful and simply requires 

ft=-- - 

771 exp (2i82) - 1 
9 0<771<1 2iq fi = (1.18) 

Figure 4. Single-particle exchange and ‘exchange’ forces. 
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so that there are indeed two real parameters for each partial wave, subject only to the 
inequality constraints on the 71. These simply require each partial-wave amplitude to 
lie inside the circle in the complex z plane shown in figure 5(a);  elastic unitarity says 
that 72 = 1 so that the amplitude must lie on the boundary circle. For an inelastic 
scattering process the - 1 in the numerators of equations (1.17) and (1.18), which arise 
from the incident plane wave in the scattering wavefunction, are missing so the 
unitary circles are centred at Fl= 0 rather than FE = +i, as shown in figure 5(b) .  

Figure 5. The unitary circle. (a) Elastic, (b)  inelastic scattering amplitudes. 

The  weaker inequality constraints allow a continuous set of amplitudes which give 
exactly the same cross section. This continuum ambiguity is potentially far more 
serious than a few discrete alternatives and we shall be largely concerned with describ- 
ing how big it is and what might be done to cure it by including extra theoretical input. 
We shall see that, in principle, one can remove the ambiguity by using the analytic 
properties of the amplitude but that in practice, useful results require data of un- 
achievable precision. 

The  general form of the unitarity relation for the scattering from a state i to a statef 
can be written 

Im A, = 877 J Afj'Aja d@j (1.19) 
j 

where the integral is over the invariant phase space of the intermediate state 

(1 -20) 
n= 1 

The sum is over all accessible intermediate states, j .  An immediate consequence of 
this is the so-called optical theorem, which is found by making the states i and f 
identical. The  right-hand side of (1.19) is then essentially the total cross section and we 
have for the forward elastic amplitude 

(1 -21) 
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This result provides a further constraint on the forward scattering, fixing the forward 
amplitude except for a sign uncertainty of the real part. 

Information on the sign of the real part can often be found experimentally by 
observing the interference very close to the forward direction between the hadronic 
scattering amplitude and the Coulomb scattering, which is known theoretically. The  
latter is generally much weaker but, being peaked sharply forward, is visible close to the 
forward direction. 

1.3. Practical phase-shift analysis 

This introduction would not be complete without a brief summary of the method 
and successes of practical phase-shift analysis, as we shall be dwelling at length on the 
uncertainties of these results. In  practice, the scattering amplitude is usually calculated 
in terms of the phase shifts and elasticities in each partial wave up to the cut-off L, and 
these are varied until the reusltant cross sections and polarizations are a best fit to the 
data at a particular energy. This process typically yields a large number of solutions; 
often several hundred random searches are made, each giving a different 'best fit'. The  
alternative method often employed is to make a Legendre expansion of the cross 
section and to fit the coefficients from this to those predicted from the amplitude. 
Some sort of energy-smoothing criterion is then used to pick out of all these solutions, 
one which joins smoothly to lower energies. We shall discuss these methods in 96. 

Various phase-shift groups have found pictures of the resonance situation in n-N 
scattering that are fairly, but not perfectly, consistent. Their amplitudes as a function 
of angle tend to be less in agreement. This unanimity seems to provide something of a 
puzzle, if there really is a serious continuum ambiguity. We shall find plausible 
reasons for the amount of unanimity involved, which give no confidence that it 
implies reliable amplitudes at high energies or in other processes. 

2. Elastic phase-shift analysis 

In  most scattering processes there is an energy region where the only energetically 
allowed strong scattering process is the elastic scattering of the two incident particles. 
I t  was in this elastic region that phase-shift analysis was originally applied, when 
accelerator energies were generally still too low to create additional particles. The  
unitarity condition is, as we have already remarked, particularly simple and powerful 
here since it is an equality involving only the elastic amplitude itself. The  mathe- 
matical problem of determining the amplitude from the cross section is well defined. 
While it is still not completely solved, even for the case of spinless scattering, it is very 
largely understood and the results are sufficient to give complete confidence in the 
reliability of phase-shift analysis in the elastic region. The  main results for perfect 
data with zero errors are essentially these: 

(i) The ambiguity is discrete with, at most, a finite number of discrete solutions. 
(ii) Provided that all partial waves, except the s wave, are not too large the ampli- 

tude is unique, apart from the so-called trivial ambiguity 

which corresponds to changing the sign of all phase shifts. 
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(iii) If the partial waves become larger, then in a number of situations there is an 
additional twofold ambiguity first noted by Crichton (1966). For a variety of artificial 
cases it has been shown that this is the only ambiguity that can exist; it is plausible that 
these results are universally true in the elastic region. 

We shall now go on to consider these points in detail. 
A good deal of attention has been devoted to the conditions for the existence of a 

unitary elastic amplitude for a given cross section. It is clear that not all cross sections 
which could be written down are physically possible-for example, they must not 
vanish in the forward direction since the optical theorem (1.21) requires the forward 
amplitude to have at least an imaginary part, if there is any scattering at all. Martin 
(1969) has given a more sophisticated example. Clearly, the existence problem is not 
important in practice since we know that the data do come from a unitary amplitude, 
but it is of some mathematical interest. Conversely, the uniqueness problem is of great 
practical importance, since the results of a phase-shift analysis are assumed to be the 
amplitude for the process, which may not be true if there are alternative solutions. 

2.1. The unitarity condition 

elastic region is simply 
It is convenient to write the unitarity relation in its integral form, which in the 

Im F12 = - s F13F32 dQ3 (2.2) 47 

where F12 = F (cos 812) is the scattering amplitude for a direction 1 to a direction 2. 
From this form it is clear that the trivial ambiguity, which reverses all real parts, will 
always be present since it changes neither (2.2) nor the modulus of the amplitude. The  
addition theorem for spherical harmonics: 

and (1.12) in (2.2) yields the partial-wave unitarity relation (1.17). To combine the 
knowledge of the differential cross section, or equivalently of IF(cos e)/, with the 
unitarity condition (2.2) it is convenient to write 

F (COS e)= IF (COS 8)l exp [i$ (COS e)] 
when (2.2) becomes 

1 S dQ3 IF13 I IF32 1 COS ($13 - $32) sin $12 = - 

which is a nonlinear equation for the phase function $. 
4T IF12 I 

2.2. The existence question 

A condition for the existence of a unitary amplitude which yields a given cross 
section can be found by applying the contraction mapping principle to equation (2.4), 
which is regarded as a mapping from a function space containing $(z) onto itself-any 
function $(z) substituted in the right-hand side of (2.4) will yield another function 
$'(z) on the left-hand side, and each of these functions is a point in a suitable space- 
so that 

$' = O($). (2.5) 
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If the output region of the function space $'(z) produced by the mapping lies entirely 
within the input region for any choice of #, and if any pair of points are brought closer 
together by the mapping, then the mapping is called a contraction mapping; iteration 
of the mapping will then give successively smaller regions and it may be proved that 
there always exists a fixed point, which is mapped onto itself. 

Such fixed-point theorems are powerful weapons in nonlinear analysis. They were 
first applied to these problems by Klepikov (1965), Newton (1968), Martin (1969) and 
Atkinson et al (1972, 1973b); the fixed-point value of the phase function #(z) is, of 
course, the unitary solution which we seek. 

In  order that the mapping (2.4) has at least one fixed point, it is plausible that some 
limit will be needed on 

where the maximum is over all possible values of the angle (12). If the phase is slowly 
varying then (2.4) is indeed roughly equal to the maximum value of sin p. For this to 
be physical we need 

sin p< 1. 

One can then show, using standard mathematical techniques, that this condition is 
sufficient to ensure that (2.4) is indeed a contraction mapping and so must have at least 
one fixed point, whose phase ensures that elastic unitarity is satisfied. The  iteration 
procedure implied indeed converges and can be carried out on a computer to give the 
solution. This result is interesting but the condition sin p < 1 is, in fact, very restric- 
tive; for instance, due to the denominator of F I ~  in (2.6) it excludes differential cross 
sections with deep dips. 

If we remove the trivial ambiguity by requiring that the real part be positive, then 

o<+(cos  e)<,+ 
which in turn implies that 

Re F (COS 0 )  > 0, Im F(cos 8)>0 (2.7) 

(2 * 8) 

so there are no sign changes. Furthermore one can argue for I >  1 

Re FO t Re FJ = Stl 8 dx Re F(x) [ l  t Pz(x)] > 0 

since IPl(x) I < 1 and similarly for the Im (Fo & Fl). Since all partial waves are on their 
unitary circles these inequalities imply Im Fl e Q or 161 I < 8.r. This bound has been 
improved to 61 < 3.r, 1 > 1. So all the waves except the s wave must be fairly small, and 
certainly non-resonant for these results to hold; they do not therefore apply to the 
regions most interesting experimentally. However, the existence problem is not impor- 
tant in practice, because we are confident that our cross sections do arise from unitary 
amplitudes. 

2.3. The uniqueness problem 

is unique; various such conditions have been derived and the best so far is 
A stronger condition than sin p < 1 is likely to be needed to ensure that the solution 
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due to Martin (1969). We shall give a simple proof, also due to Martin, that the solu- 
tion is unique as long as sin p < (2)-1/2. It employs the standard technique of assuming 
two solutions, F and G, and showing that their difference is zero. 

It follows from these assumptions that we can write 

Im F12-Im dRs[(Re F-Re G)13 (Re F + R e  G)32 

+(Im F - I m  G)13 (Im F + I m  G)32] (2.10) 

( I m F + I m G ) ( I m F - I m G ) + ( R e  F + R e G ) ( R e  F-ReG)=O (2.11) 

but since IF1 = IGI 

giving 

(Im F - I m  G)12= (Im F - I m  G)13 

] (Re F + R e  G)23. (2.12) 

Now we have seen that (Re F+ Re G) may be chosen to be always positive, so it follows 
that 

IIm F -  Im GI < max / Im F -  Im G 1 tan p 1 !!!! (Re F +  Re G). (2.13) 

But j (dQ/47) Re F is the real part of the s wave, which must always be less than 
Q in the modulus so, finally, 

IIm F-Im GI Gmax IIm F - I m  GI tan p. (2,14) 

If tan p < 1 this can only be true if Im  F= Im G, which combines with their equal 
moduli to give F = G (the arbitrary sign of the real part is the trivial ambiguity again). 
Hence for sin p < 1/-,/2 the solution is unique. 

Somewhat more powerful arguments give the result (2.9), but even these involve 
using some upper bounds that are far from tight and Martin has conjectured that 
uniqueness probably holds for sin p< 1. We have already emphasized that this is a 
very restrictive condition that excludes most interesting scattering situations, but it 
does cover one most important case. 

47T 

2.4. The threshold region 

since it can be shown that the higher partial waves 
In  most processes there is a region near threshold in which the s wave is dominant, 

Fi ,w q"+l (2.15) 

near q = 0. This follows essentially because the coefficient of xl in the expansion of the 
longest-range part of the scattering 

(2.16) 

in powers of x will always contain the coefficient q21 because it is the momentum 
transfer t = 2q2( 1 - x) that always appears in the scattering amplitude. Thus, unless for 
some special reason the s-wave scattering length is zero, there will always be an energy 
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region in which the s wave dominates, when 

sin p=sin 60 < 1. 

In  this region the phase-shift analysis will be unique. 

1111 

(2.17) 

2.5. ArtiJcial cases-polynomial OY entire amplitudes 

A much fuller understanding of the uniqueness problem and of the nature of the 
ambiguities has been obtained under certain artificial assumptions, though even here 
the picture is incomplete. We shall first discuss situations in which there are only a 
finite number of partial waves, so that the amplitude is a polynomial in z. This is an 
unphysical assumption since the tail of the scattering interaction affects all partial 
waves, as shown in ( 1  ,14), and it is incompatible with general principles, particularly 
crossing symmetry, which says that the same function of the kinematic variables 
describes the different scattering processes obtained by reversing external lines of the 
scattering picture, and at the same time changing the corresponding particles to their 
antiparticles. However, it is also true that if we take into account a large enough 
number of partial waves, any reasonable angular distribution can be fitted to any 
chosen precision by a finite number of partial waves, as long as we stay within the 
physical region. In  practice, most analyses are done by fitting with a finite cut-off L in 
angular momentum. We shall see later that this reasonable approximation is not as 
innocent as it may seem. 

If the amplitude is a polynomial of degree L, it may be written 
L 

2-0 
F(z)= (2Z+ l)FzPz(z) (2 .18)  

and the cross section will have the form 
2L 

n=0 

The expansion coefficients cn will then be bi-linear combinations of fi and fl(" of the 
form 

where the Clm, lm'nM are the usual Clebsch-Gordan coefficients. T o  determine the 
partial-wave amplitudes fz from the coefficients cn, we can work down from the top 
(this is a highly artificial thing to do since in practice it is the high coefficients in the 
Legendre expansion of the cross section that will be least well determined, but in the 
cut-off model it is exact). We have 

(2 .21 )  

c2~-2 = ~ L - I , L - ~ ~ ~ - ~  1.f-i l 2  + C L , L - ~ ~ ~ - ~  2Re fL f ~ - 2 *  
so clearly C ~ L  determines lf~l2. Since f L  must lie on the unitary circle, there are two 
possibilities, shown in figure 6. Remembering the trivial ambiguity, we may choose 
Re fL > 0. Going on to the next coefficient ~ 2 ~ 1 ,  we can determine Re fL-1 fL", which 
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gives us the projection of fL-1 on the direction of fL-again, this allows two fL-1 
possibilities, as in figure 6. For each of these, we go on to c 2 ~ 2  and determine 
Re f ~ - 2  fLX, which again will give two solutions for f~-2. So working down to CL we find 
a set of 2L possible solutions. 

The  remaining L coefficients CO, c1, . . ., CL-I provide additional constraints on 
these solutions and one might expect that they would select an unique solution (real 
numbers contain infinitely more than the L bits of information required, if they are 

0 0 

Figure 6.  The deduction of a polynomial amplitude from the cross section, 

truly independent). However, Crichton (1966) constructed an example with L = 2 
which has a twofold ambiguity. He found that the two sets of phase shifts 

SO= -23" 20' 81= -43" 27' 82 = 20" 

80 = 98" 50' 82 = 20" 
(2.224 

81 = - 26" 33' 

give identical cross sections. These amplitudes do not violate the Martin uniqueness 
theorems because Re F changes sign and sin p > 1. 

2.6. Crichton's ambiguity and the counting argument 

There are grounds for hoping that the twofold ambiguity, which Crichton (1966) 
illustrated, may be the only sort of ambiguity which is present in the elastic unitarity 
situation. Martin (1969) showed that this was SO for L = 2, and elucidated the relation 
between the two solutions, which have the form 

15 
- exp (iS2) sin 82 [cos 0 -XI(&) rt iy1(82)] (cos 6 - + + $3 cot 82). 
2 (2.22b) 

These results have been extended by Atkinson et aZ(1973a, 1974) and by Cornille and 
Drouffe (1974) to the case of L=4  and 5 ,  while Itzykson and Martin (1973) have found 
the same result for entire functions which are not polynomials by the powerful use of 
the substantial mathematical understanding of such functions that has been built up. 
There is also no known example of an elastic unitary amplitude with more than a 
twofold ambiguity, always in addition to the trivial ambiguity (2.1). 

Furthermore, there is a general argument due to Berends and Ruysenaars (1973) 
which, though not conclusive, lends support to the idea that there can be, at most, a 
twofold ambiguity. It is interesting enough to be worth summarizing here. We choose 
to write the amplitude as a product over its zeros 

L 

i=  1 
+ ) = A  n ( x - X I )  (2.23) 



Principles and problems of phase-shift analysis 1113 

the overall coefficient of ZL is clearly proportional to FL. In  fact 

2L I X = exp (i8L) sin 8 ~ ( 2 L  + 1) 2 2L(L!)2' 

Now the cross section has the form 

(2.24) 

(2.25) 
i = l  

and will be unaffected if we replace any of the roots X n  by its complex conjugate (this 
was first noted by Gersten 1969). We can make these changes in 2L possible ways, as 
long as we do not bother about unitarity, except for the highest partial wave where it 
fixes sin2 8L. Let us choose this time to remove the trivial ambiguity by choosing 
sin 8~ > 0. Now let us impose unitarity. 

Let us assume that there are N unitary amplitudes, out of the possible 2~5. The  
amplitudes are functions of 2L 4 1 variablesqh, the real parts of the L zeros, and the 
moduli of their imaginary parts-each amplitude being a different function of those 
variables because of the sign changes from the complex conjugations. Now the uni- 
tarity equations 

Im Fzk= IFzk12 K = l , 2 , .  . ., N, Z=O, 1 , 2 , .  . ., L-1 (2.26) 

for each of the solutions provide a total of N L  constraints; if these equations are indepen- 
dent, and there is to be a solution there must not be more equations than variables so 

N L < 2 L + l  (2.27) 

which requires N < 2 .  Since the independence has effectively been proved for poly- 
nomials with L < 5 and for entire functions, it is not unreasonable to suppose it holds 
more generally. 

In  summary, it seems fairly likely that there is at most a twofold non-trivial 
ambiguity in the elastic case. Notice that the complex conjugation of the zeros in 
(2.23) applies equally well to polynomial amplitudes in the inelastic region (Gersten 
1969), and shows that the ambiguity there is again discrete and of order ~2L-this  
result is not true except in that artificial case. 

2.7. Removal of the trivial ambiguity 
We have seen that the trivial ambiguity, which corresponds to reversing the sign of 

all real parts and thus of all phase shifts, is always present under the normal assump- 
tions of phase-shift analysis. For charged particles this can, in principle, be removed 
by observation of Coulomb interference. It can also be removed by the inclusion of 
extra dynamical constraints on the amplitude, but we should want them always to be of 
a most reliable kind, and not merely based on an uncertain dynamical model. The  
forward dispersion relations provide us with such a weapon, since they directly express 
the forward real part of the amplitude in terms of integrals over the forward imaginary 
part, which is in turn related to the total cross section by the optical theorem (1.21). 
Since they relate amplitudes at all energies this moves us out of the domain of strict 
single-energy analysis and looks towards the multi-energy procedures we shall discuss 
in detail in 96. The  argument is not quite as simple as it might be because the relations 

74 
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contain subtraction terms and have the form, for example for pion-nucleon scattering 

but it can be shown that, except in pathological circumstances, only one of the two 
solutions will be compatible with them. The argument notes that the optical theorem 
gives Im A and the data /A 12 on the physical cut of the integral. So Re A is fixed, 
apart from a sign, and if there are two different amplitudes they can only differ in this 
way. Both amplitudes, A and A, satisfy the dispersion relation with the same integral; 
they can only differ in the subtraction terms, so 

A- A= a + p ~  (2-29) 

but I m A = I m A ,  and R e A =  - R e A  so that ReA=S(a+pE) .  It follows that 
A - +(a+ PE) is real below cuts, imaginary on cuts and bounded by E In E.  I t  must 
therefore have the form - constant [(E-Eo)(E+ E0)]1/2 

which we know is nonsense, so the trivial ambiguity is removed. 

2.8. Summary on the elastic region 

In  summary, we have shown that the ambiguity is, at most, discrete in the elastic 
region, and that it is no more than twofold in all known cases, apart from the trivial 
ambiguity. Most important, there is a region near threshold where the solution is 
unique. There is little doubt that extra dynamical input, such as dispersion relations, 
can reliably handle the problem of sorting out these discrete alternatives and finding 
the right amplitude from the cross section. 

The situation is very different in the inelastic region. 

3. The inelastic region 

When we move to the energy region where inelastic processes occur, the ambiguity 
situation alters completely. Unitarity, which in the elastic region directly relates real 
and imaginary parts of the amplitude for each partial wave, now only provides an 
inequality constraint between them, requiring each partial-wave amplitude to lie inside 
or upon its unitary circle. I t  is now almost self-evident that the standard constraints 
L,  R and U allow a continuum of solutions. If all partial waves lie inside their circles 
and a finite distance from the edge, there will be a whole family of phase functions 
$(z) in (1.2), of limited magnitude but of infinite variety of functional form, which will 
not move any wave outside its circle. This is almost self-evident and a formal proof has 
been given by Atkinson et aZ(1973a). All these amplitudesfwill thus satisfy L, R and U. 
The only tricky point concerns the high partial waves of elastic scattering processes 
where we know from (1.14) that the amplitudes are very small and thus lie very close to 
the edge of the unitary circle, figure 5(a).  We must make sure that the transformation 
4 keeps these waves inside their circles. Since the high partial waves are controlled by 
the long-range forces, that is, by the tip of the cut near x = xo, this requirement simply 
constrains $(z) at that point. We have seen that the assumption R ensures that $ has 
no cut nearer to the physical region than zo. 
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The sharp change in the ambiguity situation at the inelastic threshold is marked in 
practical terms by the doubling of the number of parameters in the partial-wave 
analysis-for each partial wave the phase shift 61 is joined by an inelasticity parameter 
72 as in (1.18). Although the total inelastic cross section is measurable, the qz are not 
and they effectively double the amount of information which must be found from the 
cross section, a demand it cannot meet. 

If all the coupled inelastic channels could be fully measured, the unitarity relation 
would again become an equality, with only one real parameter per process for each 
partial wave; the situation would be akin to the elastic case, though it is more compli- 
cated and is far from being completely understood. However, apart from charge 

, 

Figure 7. Models of scattering from composite targets. 

exchange processes, it is never possible in practice to measure all coupled processes, 
because only proton targets are available so, for example, R p  + Kp, TA, TZ and qX are 
measurable but TA-+TA etc are not. (By using a theoretical model, illustrated in 
figure 7 ,  for scattering from composite systems like the deuteron (for neutron targets) 
or the proton (for T ,  K or A targets) the range of processes could be extended at the 
price of greatly reduced accuracy and some uncertainties in the model itself, but no- 
one has yet used this approach to measure a complete range of processes.) 

Once three-body channels open up, this extension of elastic arguments becomes 
impossible, even in principle. We shall therefore discuss the problem of the analysis of 
one-process measurements only. To summarize, the fact that unitarity is only an 
inequality constraint introduces a continuously infinite set of solutions. 

3. I .  The size of the ambiguity continuum 

Having shown that there is a continuum of scattering amplitudes for each set of 
perfect data measurements, corresponding to different functions $(x) in (1.2), we now 
want to discuss its size in practical terms. The  ambiguity continuum will correspond 
to an area, or areas, on each partial-wave Argand plot, each point of which is linked to a 
point in a similar area for each partial wave. The  continuum is limited by unitarity, 
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which requires that these points lie inside the unitary circle for all partial waves. In  
practice, if these areas, or islands of ambiguity, are small, the ambiguity will not be 
serious-even though there is an infinite set of solutions, they are all similar. If, 
however, the islands of ambiguity cover a significant fraction of the Argand circle for 
some waves, it is clearly serious; we shall see that this is the usual situation. 

The ambiguity continuum is a functional of the phase function +(z) and to find its 
true boundaries is a very difficult problem on which no progress has been made-it 
involves exploring the whole of an infinite dimensional function space. However, 
some explorations have been made by choosing particular directions in the function 
space and looking in those; such investigations will at least find a lower limit on the size 
of the ambiguity continuum. There have been two main approaches, both involving 
extensive numerical work, for nobody has thought of a simple analytical way of 
approaching the problem quantitatively. 

The  first approach involves choosing particular forms for +(z) 

+(4 = c atdi(4 (3 1) 
and varying their magnitudes ai until the unitarity limit is reached in some partial 
wave. This was first used by Bowcock et a1 (1971, summary given in Burkhardt 1973) 
who made a very limited exploration of this phase ambiguity in pion-nucleon scatter- 
ing. Even so, they found that substantial changes could be made in the original Saclay 
phase shifts, involving significant changes in the parameters of some of the resonances. 
It has since been extended by Pietarinen (1973a,b). 

An illustration of the kind of results which emerge is provided in a simple example 
worked out on a model amlitpude (Bowcock and Hodgson 1972). Taking 

L 

-2 & - 0 2  -0.1 0 I 0.2 

Figure 8. A model one-dimensional continuum ambiguity. (a) s wave, (b)  p wave, ( c )  d wave. 
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the behaviour of individual partial waves may be plotted as the phase function $(x) is 
altered by modifying the strength of A. The behaviour of the high partial waves in this 
case can be investigated analytically and controlled so that they all satisfy the unitarity 
bounds. Figure 8 shows how the s, p and d waves change as X is varied in both positive 
and negative directions. 

For values of X between -2  and 1 all waves lie inside the unitarity circles and 
corresponding points on the arcs represent allowed partial waves. Two things are 
clear. One, that there can appear, even in a very simple example like this, a consider- 
able range of ambiguity and two, the fact the partial waves may re-enter the circles 
indicates the possibility of discrete patches of ambiguity. It should be stressed that the 
ambiguities form lines only because the phase function $(z) has one parameter; 
generally they will form areas. 

3.2. The partial-wave method 

A second, more systematic approach has been developed by Atkinson and various 
co-workers (Atkinson et al 1974). It rests on the fact that there is no continuum 
ambiguity in the elastic region, where the inelasticities are fixed and uses the latter as 
variables with which to parametrize the continuum-this seems a sensible thing to do. 
The  method is interesting mathematically so we shall describe it in some detail. The  
essential ideas and their mathematical expression are these : 

(i) The  partial-wave unitarity equation for an elastic process in the inelastic region 
can be written 

Si = At- 0 1 2  - A12 - I2 = 0 

where the physical scattering amplitude Fl = At + iDz, and It represents the inelastic 
contribution to the absorbtive part, Az, of the wave; below the inelastic threshold 
IzEO. The method parametrizes the ambiguity through the I1 but, as we shall see, 
there are constraints on them which complicate the situation. 

(3 -4) 

(ii) The  differential cross section 

so that if we know the Ai we can calculate A(x) and so can find 

(iii) We project out the Dz using the complex partial-wave projection 

where the Qz(z) are the Legendre functions of the second kind; the integral is around 
an ellipse E in the complex x plane which surrounds the physical region. Provided 
R1/2(x) is analytic inside E ,  the ellipse can be shrunk down onto the physical region 
- 1 < x c 1. Then the integral only involves 

@(x+ iE) - Ql(z - is) = irPl(z) (3.8) 
and the usual real partial-wave projection emerges from (3.7). There are two reasons 
for preferring the complex form, one concerns the zeros of R(x), which are the main 
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source of complication in this method (we shall return to them in a moment). The 
other, more important reason is that (3.7) automatically preserves the large I behaviour 
(1.14). 

These equations provide the basis for an iterative scheme, in which the Iz are 
chosen as variables specifying the inelasticity and the Al and Dz are determined self- 
consistently by equations (3.4) to (3.7). 

Since R(x) = D(a)2 is the square of a function analytic in the ellipse, its zeros should 
all be even-order zeros (in practice, usually double). However, there is nothing in 
equation (3.6) to ensure that this will always be so; we therefore impose this constraint 
a t the  zeros of R, in the form 

R(A, z j ) = O l  

i dR 
dz 
- (A,  Zj) = 0 

where we assume there are N such zeros. 
addition to the 

(3 .sa> 

j =  1, 2, . * *, N 
(3.9b) 

The effect of these 2N extra constraints, in 

&(A, I )  = 0 (3. lo) 

required by (3.4), is to fix not only the positions of the N zeros xj but also N of the 
inelasticities IJ 2: Iz, in addition to the AJ of the unconstrained problem. We may choose 
the Iz in various ways, but let us for simplicity assume they are the first N of Il, 

Z =  0, 1, . . ., N - 1. Thus as free input parameters with which to explore the ambiguity, 
we are left with the IJ  for 12 N .  

Notice that, compared with the first method, the space of functions has been 
reduced to a denumerably infinite set, and that the inelastic unitarity condition is 
automatically satisfied if we choose our IJ  < 4, except for the Il which must be checked 
by hand. Notice also that for a polynomial amplitude, where Fz = 0 for I > L,  there will 
be just L zeros and no cuts in the z plane, so that we may choose the ellipse E to include 
all the zeros and the L IJ are determined. The problem is thus completely con- 
strained and no continuum ambiguity exists, as we should expect. 

The method which Atkinson et aZ(1974) have used to solve these nonlinear equa- 
tions is to linearize them, by expanding to first order in 6Az, 6Iz and 6zj and, having 
chosen the free IJ ,  to iterate the linearized equations so that, after n iterations, 

m N 

(3.11) 

Convergence of this Newton-Kantorovich system is both proved and found to result 
in practice. The  proof is needed because the system of equations is infinite, since I goes 
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up to infinity, and shows that the kernel reduces to unity plus a compact operator 
on a Banach space, so that an inverse almost always exists. The  equations are solved 
on a computer-practical computing problems are largely concerned with handling 
the zeros of R, in particular new zeros which may cross the boundary of the ellipse. 

The results are of great interest. The first application was to the scattering of alpha 
particles on alpha particles at 35 MeV, chosen because a good phase-shift analysis 
existed (Darriulat et aZl965). In  order to work with perfect data, the differential cross 
section used was that given exactly by the square of the modulus of the amplitude found 
in the phase-shift analysis. The object was then to find a set of other amplitudes which 
give exactly the same cross section. Results are shown in figure 9, each letter corre- 

( b )  

Figure 9. Points in the ambiguity continuum for E E  scattering at 35 MeV. (a)  L=O, s wave; 
(b)  L = 2 ,  d wave; ( c )  L = 4 ,  g wave; ( d )  L = 6 ,  i wave. 

sponding to a different choice of the free Iz, The method yields a discrete set of 
alternative amplitudes, one for each specific choice of these Iz, but since the Iz can take 
on a continuous range of values these points are just points in a continuum. The  
envelope of these points gives a lower bound to the size of the islands of ambiguity in 
this case. Notice that for the lower partial waves it covers a significant fraction of the 
Argand circle. 

Recently, they have extended this work to the more exciting situation of pion- 
nucleon scattering. There are some complications which arise from the inclusion of 
spin in the scattering formalism and we shall discuss these in $7, but the nature of the 
continuum ambiguity remains the same, so we shall describe the results here. Figure 
10 shows the results for various partial waves in n i p  scattering. The  starting points at 
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(4 
Point 
1 
2 
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4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

(b)  
Point 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

(C) 
Point 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

W(MeV) TL 
1390 41 1 
1 500 580 
1572 689 
1600 745 
1615 771 
1629 795 
1658 846 
1738 991 
1900 1305 
2043 1606 
2108 1750 
21 50 1845 
2277 2145 

W(MeV) TL 
1160 98 
1201 150 
1232 190 
1258 225 
1275 247 
1292 270 
1320 310 
1390 41 1 
1444 492 
1470 533 
1512 599 
1531 630 
1658 846 
1716 950 
1768 1047 
1860 1225 
1900 1305 
1932 1370 
1997 1506 
2235 2043 
2388 2420 

W(MeV) TL 
1768 1047 
1860 1225 
1900 1305 
1932 1370 
1968 1445 
2022 1560 
2043 1606 
2108 1750 
21 50 1845 
2235 2042 
2320 2250 
2388 2420 

Figure 10. Islands of ambiguity in v+p scattering in three typical partial waves. The energy 
of each island is given in the table, and adjacent energies have sometimes been 
drawn on separate circles to reduce confusion. 
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each energy are the results of the Saclay phase-shift analysis and the islands of ambi- 
guity indicate the range of different amplitudes which are found to give exactly the 
same data. The  islands are, generally speaking, smaller than in the 0101 case, and are in 
some cases remarkably small. However, in some cases where small resonance circles 

Table 1 

ER (MeV) 
1232 
1650 f40 
1670 + 30 
1690 
1890f40 
1900 
1910 + 80 
1950f20 

I’ (MeV) 
115 
170 
230 
? 
250 + 100 
? 
270 + 70 
230 + 50 

Normal 
rating 
#### 

###I( 

#.#* 

# 

YlYY 

# 

### 

*#U# 

Partial 
wave, LIJ 
p38 
s3l 
D33 
P33 
F35 
s3l 
p3l 
F87 

Status 
Solid 
No significant change 
No significant change 
Uncertain 
No significant change 
Can be removed 
Big changes possible 
No significant change 

are involved there is the real possibility of suppressing the resonance. Table 1 gives 
their view on the status of the resonances which have been suggested, and it is only 
these which were previously uncertain that are in doubt. This is no surprise since it is 
likely that different phase-shift groups, although they generally use similar methods, 
will find results in different points of the ambiguity continuum, and so will find less 
unanimity when the ambiguity is serious. ,The ,details :are given:in Atkinson et a1 
(1975). 

While most of the resonances seem to survive this investigation in r+p, in K+p the 
situation is more ambiguous. Van Driel (1975) finds large islands of ambiguity which 
can vary the speed on the Argand plot so that none of the usual structures need be 
taken seriously as resonances. These results are still preliminary in the sense that 
further explorations are taking place. It should be stressed that all these explorations 
are only partial-the local continuum could be larger and there could be other islands 
of ambiguity as well. Also, the variation of the cross sections allowed by finite errors 
will increase the size of the ambiguity. The marked variations in size and shape of the 
islands found at neighbouring energies suggests that the exact form of the cross section 
may be restrictive and the effects of data errors could be large. 

We believe that the reason the ambiguity is less serious in r + p  may be that the 
strong ‘peripheral’ resonances in high angular momentum states give a characteristic 
signature to the angular distribution which is hard to imitate; this is, however, 
speculation. 

4. The search for uniqueness 

We have stressed earlier the usefulness of a unique phase-shift analysis procedure. 
Now we want to see how one might remove the ambiguities inherent in the inelastic 
region by including more theoretical input information in the analysis. The approaches 
may be divided into two classes. Most methods used in practice have been based on 
imposing smooth behaviour on the amplitude as a function of energy-we shall 
examine the reliability of these later. First, we shall look at how one might hope to 
obtain a unique single-energy phase-shift analysis. 

I t  is important to recognize that there are many unsound ways to find a unique 
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solution in a practical analysis. It is only necessary to over-restrict the parametrization 
employed. For example, the amplitude 

+I'  f ( E ,  x) = ~~ ---- exp (ic$(z)) 
ER-  E - $ r  

gives a flat angular distribution for any finite c$ which is real in the physical region. 
However, the 'reasonable' assumption that the scattering is 'dominantly s wave' 
requires 4(x)=O and removes the continuum ambiguity. The cut-off at Z=L in 
practical analyses will similarly pick a discrete set of points out of the ambiguity 
continuum (1.2) on an equally doubtful basis. Now we shall look for a well-founded 
route to uniqueness. 

Single-energy analysis is concerned with the behaviour of the amplitude as a 
function of the cosine of the scattering angle, cos 0 = x, or equivalently as a function of 
the momentum transfer, t=  -2q2(1 -z) .  In  fact, we know quite a lot about this 
structure; it is usually discussed in terms of the analytic structure of the amplitude as a 
function of the complex variable x, as in figure 3. We may hope to exploit this 
information. 

For a long time it has been recognized that a knowledge of the long-range forces can 
help a phase-shift analysis, because these forces dominate the high partial waves. These 
forces correspond to the nearest singularities in z to the physical region. It is thus 
worth examining what further information about the x structure of the amplitude 
might be included, its reliability and whether it would remove the continuum ambi- 
guity. Two sorts of information are worth distinguishing between. The general 
analytic structure in x, including the position of the singularities, is known reliably; it 
depends only on kinematic calculations and some general assumptions. The strength 
of singularities, on the other hand, is only calculable in dynamical models, and these 
are not generally reliable. The poles, due to particle exchange, are best known; of 
the cuts only the nearby tips, where few particles can contribute, are at all well 
understood. 

Now to answer these questions for phase-shift analysis. It is fairly clear that the 
location of singularities alone does not remove the continuum ambiguity. In  (1.2) it is 
only necessary that c$ be analytic apart from the same cuts, which certainly does not 
require that c$ = 0. Burkhardt (1972) showed that further general constraints, while 
reducing the allowed c$(z), do not give uniqueness. If, however, the strength of a piece 
of cut is given, a unique solution follows. The argument illustrates the great strength 
of the assumption of analyticity; in principle, when an analytic function is known over 
any finite line, however small, it is known everywhere. Later we shall see that in 
practice, as commonsense suggests, this result is not nearly so powerful, because very 
small errors in input can become exponentially magnified in the extrapolation. 

4.1. The cut discontinuity 

real axis, we may write the cross section 
In a region like the physical region - 1 < x < 1, with no cut in the amplitude on the 

U(.) (da/dR)(x) =f (~) f" (~")  (4.1) 
which, because the complex conjugation of x is double, is an analytic function of 2, 

which we can thus continue, or extrapolate in x. Let us assume, as can be shown, that 
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we can write on the two sides of the real axis 

where f t  is the cut strength, or discontinuity, which we assume is known theoretically. 
Substituting in (4.1) and continuing to just above the cut we find 

U(.) = ( f B  -k ifs -k ;ft)(.fR - ifs -k ift) 

= f R 2 +  fa2- ft2+2ifRft. (4.3) 
Knowing ft, the imaginary part of U(.) fixes f R  and hence the real part fixes f s ,  apart 
from a sign. Thus we know f itself on the piece of cut where we know f t ,  and thus in 
principle everywhere ; again an analytic continuation is implied. 

Notice that knowing a pole is not enough, since an analytic function is not defined 
by its value at a point. We shall see later that this hopeful route to uniqueness is, in 
fact, vitiated in practice by the instability of the numerical analytic continuations it 
implies. 

4.2. Other ideas 

Other suggestions for including long-range force contributions are based on fixing 
a few high partial waves. Now if all the fi for 1 > L are exactly known they define a cut 
discontinuity and the above result gives uniqueness. In  practice, however, an approxi- 
mate calculation is made of only the next few waves above the cut-off L. It is clear 
from Atkinson’s argument that an infinite number of 11 are still unconstrained and the 
continuum exists. How big it is is again a matter for numerical investigation. Present 
indications are that the reduction is not large. 

Alcock and Cottingham (1973) made dynamical calculations of a few higher partial 
waves, based on a two-particle exchange model. They found that adding them to an 
existing phase-shift analysis improved the fit. Though it is clear that it is not the fixing 
of the high partial waves which produced the unique fit, since the analysis was already 
stable, it is circumstantial support for the result. 

It is already clear that, in order to understand the practical possibilities of using 
analytic structure to eliminate the continuum ambiguity in this way, we must look 
further at numerical analytic continuation and the way errors in the input from data 
affect the results. We shall digress to do this before returning to look at how the 
properties of the amplitude as a function of both energy and angle have been and might 
be used to reduce ambiguities. 

5. Practical difficulties of analytic continuation 

It was shown in the last section that the analytic structure of amplitudes as func- 
tions of the kinematic variables could provide constraints which, in principle, might 
remove the ambiguities. If this is so, why has wider use not been made of these 
constraints to reduce the number of solutions? The  answer lies in the fact that the 
application of the constraints involves in some form the analytic continuation of a 
function whose values are given only approximately, and that such extrapolations are 
highly unstable. In  this section we want to illustrate this instability and indicate how 
one can estimate when such extrapolations can be profitably made. 
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The essence of the problem is that you can find functions with a chosen analytic 
structure, which are arbitrarily small in one region and arbitrarily large in another, for 
example the function 

is totally negligible in the physical region IzI < 1 but very large on the cut z > 1.5 where 
the square root is pure imaginary. So it is easy to see that, even if one knows the 
analytic structure of an amplitude, a very small uncertainty in its value in one region 
can build up rapidly on extrapolation. It is not, of course, an accident thatf(z) in (5.1) 
oscillates rapidly on the cut. 

Let us now make this argument more general. We shall choose to take the region 
on which we measure the function, the known region K, as the real axis z-x, and 
assume we wish to continue analytically in the complex plane up to the unknown 
region U the line z=x+iy.  We assume that the function is analytic in this strip; any 
region of analyticity can be mapped into such a strip by a suitable change of variable. 
Now under certain reasonable conditions we can write the function as a Fourier 
transform 

where 

f(x)=lOgexp [-109(1.5-z)1/2] (5  * 1) 

f ( z )  = f? f( w )  exp ( - iwz) dw ( 5 . 2 )  
1 f im 

is defined by its value on the real axis. Now (5.2) definesf(x) for complex x as long as 
the integral converges, so 

f(x+iy)= f?mf(u) exp (wy) exp (-iwx) dw. (5.4) 
Note that the high Fourier components are exponentially magnged. Now let us look at 
the effect of errors on the known region K; these arise in two ways. First, the measure- 
ments off(%) have a finite precision, with errors which are non-zero and, in the case of 
hadron scattering experiments, rarely less than 1 %. Secondly, these measurements 
only exist at a set of points xi, which also have errors in their position; this means that 
f ( x )  in (5.3) must be defined by interpolation and there will be a largest frequency for 
which the Fourier component f ( w )  is well determined. We note in (5.4) that it is 
precisely large w values that the error builds up fastest on extrapolation. 

Now there are two different ways of controlling this problem which have been 
suggested. The  first is simply to require that these exponentially growing factors do 
not cause trouble by imposing a bound, M say, on If(z)I, or some measure of it, 
throughout the region of analyticity assumed for the extrapolation. Unfortunately 
except in a very few special cases such bounds can only be obtained from particular 
dynamical models and are therefore unreliable. We shall not discuss them further. The  
second possibility is more subtle; it is aimed at using the fact that the worst behaviour 
on extrapolation comes from the high Fourier components in (5.2). These correspond 
to short-distance fluctuations in x, which we do not measure but which also, on general 
dynamical grounds, we do not believe to be important in hadron phenomena. (The 
recent discovery of the narrow high-mass mesons called J or t j  particles is a reminder 
that really new phenomena can upset the most sensible assumptions!) So if we include 
a cut-off function gmo(w) in (5.2) to eliminate the effect of components with w > WO, and 
use the convolution theorem for Fourier transforms, we are not extrapolatingf(z) but 
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Now because of finite resolution in x, this is the sort of function which is measured. 
Because of the smoothing by g ,  it contains, of course, less information thanf(z) itself 
but in a controlled and model-independent way. We know then that in an extrapola- 
tion t o y  the maximum error multiplication can be approximately exp (woy) so that the 
errors Sf satisfy 

ISfUl <exp (wOY)lSfKI* ( 5 . 6 )  

It is clear that all information about the unknown region is lost if the relative error 
exceeds unity. We therefore have the relation 

woy < In (relative experimental error) =In 6 (5  * 7 )  
so that the minimum smoothing range for an extrapolation t o y  is 

Unfortunately, with the usual errors of a few per cent it turns out that the sort of 
extrapolations we need imply smoothing over several hundred MeV in energy or 
distances in cos 0 comparable to the size of the physical region. This is clearly useless. 
The  logarithmic dependence on accuracy means that quite unachievable precision is 
needed to get the required order of magnitude improvement, so that the smoothing 
distance will be of the order of the energy resolution or a small fraction of the angular 
range. 

We shall now go on to illustrate these points in specific cases. A more thorough 
general discussion of the methods we shall describe has been given by Ciulli (1972). 

5.1. Continuation to average values by weighted dispersion relations 
We now want to give a very specific illustration of these ideas using a weighted 

dispersion relation. The  mapping of the usual cut plane (figure l l a )  in cos 8= 5 into 
the strip in the x plane (figure l l b )  is achieved by the change of variable 

cosh x = ( ~ < - z o ) / x o .  ( 5 - 9 )  
Analyticity in the cut 5 plane of any function becomes analyticity in the strip. A 
weighted dispersion relation consists of applying the convolution integral ( 5 . 5 )  to our 
functionf(x). g(x)  is chosen also to be analytic in the strip so that, integrating around 
the edge of the strip, Cauchy’s theorem gives us 

Jc, g(x - x ’ ) ~ ( x ’ )  dx‘ = JC, g(x - x ’ ) ~ ( z ’ )  dx‘ ( 5 . 1 0 )  

I E 
! 

I 

I 

’ ( a )  ( b )  

Figure 11. The complex mapping (5.9). 
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provided g(z - x’) goes sufficiently rapidly to 0 at the ends of the strip. T o  determine 
an average value of the function in the unknown region, we can choose g to be sharply 
peaked and positive there, for example 

1 - (2’ - x)Z 
g(. - x’) = a2:/nexP __ (-y- ) (5 * 11) 

could be used where the real number CY gives the width of the positive peak. From 
equation (5.10) this average value is given as an integral over the known region of the 
form 

+ -- + f(d) dx‘. (5.12) 1 1 2 479 . (x’-x) 
012 a! 

Notice its peak value has been increased and it has become oscillatory because of the 
factor exp {[47~i(x’ - x)]/a!}. This rapidly oscillating behaviour emphasizes the high 
Fourier components, as we have already discussed. So again we see from a slightly 
different point of view that the extrapolation is highly sensitive to small errors in the 
data and to the finite distance between the measurement points. The shorter the 
interval on U over which the average value is required the smaller a! must be made and 
the more accurately the experimental points must be given. 

This ‘complementarity’ can be used in a quantitative way. Going back to the cos O 
plane, let us suppose the information required is the average value of the function over 
the nearest part of the cut. If, for example, zo = 1.5 and we want the average value over 
the interval of the cut from O =  1.5 to 1-6 then equation (5.12) says that the data need to 
be known to better than 1 part in lO32! Even if the average is taken over a broader 
interval from, say, 1.5 to 2.0 the data are still required to 1 part in 1014. 

The arguments just given were based on a particular choice of weight function, 
However, it can be shown that any weight function chosen to be positive on one side of 
the strip must oscillate on the other edge and the narrower the weight function the more 
rapid the oscillations. Pisut and Presnajder (1970) have found a best weight function 
optimized with respect to some specific conditions. Using their weight functions 
instead of the simple form chosen for illustration reduces the accuracy required on the 
experimental data by a few orders of magnitude but it is still well outside anything that 
could possibly be measured, unless the smoothing region is made uselessly large. 
They have also treated the case of continuation from boundary value to boundary value, 
ie where both K and U are on the cuts, and again found an optimum weight function. 
The  results are similar, oscillations and the resulting high accuracy required appearing 
again. 

5.2. Continuation by truncated polynomial expansions 

Our final illustration is chosen to show how truncated polynomial expansions are 
used in practice to make analytic continuations. The experimental data on the dif- 
ferential cross section will normally be given in the form of the value of the cross 
section, together with an error bar at a discrete set of angles, Oi, The size of the error 
bar will depend on the statistical error and also on geometry and systematic errors. 
Analytic continuation from this discrete set of points is, of course, impossible even if 
there were no errors attached and it is necessary to make a smooth interpolation in 
order to proceed. For the simplest power series expansion it is an advantage to use a 
variable in which the cut plane is mapped to the inside of the unit circle so that all 
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points on the cut lie on the circle of convergence of the expansion. This mapping is 
illustrated in figure 12 and is achieved by the function 

(5.13) 

A function analytic in the cut z plane is now analytic inside the circle in the w plane and 
may be expanded as a power series 

m 

(5.14) 

The data now give values of the function at n points wt between A and B. Straight- 
forward interpolation of the data may be made by using these n values to determine the 
coefficients in a truncated series Xc,N,o anwm. In other words, we are prescribing a 

I LW 

(61 (0) 

Figure 12. The complex mapping (5.13). 

continuous function which passes through the data points, which is smooth in the sense 
that all derivatives of order N or greater are 0. This prescription is to some extent 
arbitrary; one can define other mappings with rather different expansions but the 
principle of truncation remains the same. 

The  discontinuity across the cross in the z plane at point C is now the difference of 
the values of the function at CD in the w plane 

*v N N 

n = l  n=l n=l 
1 a,exp(iX)- C anexp(-iX)= C an2isinnx. (5.15) 

Thus interpolating the data points by a truncated power series leads to the representa- 
tion of the cut discontinuities as a truncated Fourier series. The  vital question which 
now arises is the relation between the discontinuity obtained in this way and the true 
discontinuity, ie between 

d ~ ( x ) =  2 an sin nx (5.16a) 
N 

n= 1 
and 

m 

d(x) = C a n  sin nx. 
n = l  

Since the Fourier coefficient an is given by 

(5,16b) 

(5.17) 
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x 

dN(x) = 2 1 d(X‘) sin nx‘ sin nx dx’ 
- z  7T 

(5.18) 

= K N ( X  -X’)d(X’) dx‘ 
--n 

so what we determine using this truncated interpolation is a weighted integral of the 
true discontinuity where the weight function depends on the number of terms included. 
This is illustrated in figure 13. The  relation to our previous discussion of extrapolation 
is obvious. As N+o3 the function tends towards a 6 function and the extrapolation 
becomes exact. However, for the small values of N which are used in practice 
KN(X - x’) is quite a broad oscillatory function as shown for N =  5 in figure 13. Thus it 
is seen that there is no possibility of obtaining the actual value of discontinuity at a 
point on the cut, only information on an integral over it. 

Figure 13. The effect of truncation of an expansion for a kernel. &(x) is shown and 
Km(x)  = qx). 

Of course, the introduction of error bars to the data only makes matters worse, 
The  argument used here is not confined to a truncated Fourier series; it has more 
general validity. It can be shown (Cutkosky 1969) that the rate of convergence of the 
series to be fitted to the data can be improved by mapping the cut plane into an ellipse 
instead of a circle and the expansion is then made in terms of a series of polynomials in 
the appropriate variable. However, similar analysis shows that the value of the 
discontinuity calculated is again a weighted integral over the true discontinuity. 

5.3. Summary fm analytic extrapolation 

It seems, therefore, that any attempt to make practical use of the constraints of 
analyticity to remove ambiguities in amplitudes by the analytic continuation of 
numerical information will fail because of its instability, unless model-dependent 
assumptions are introduced. 
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6. Energy smoothing and the search for uniqueness 

We now return to the search for a sound, reliable method of finding the scattering 
amplitude from the experimental data. We have seen that, for single-energy analysis, 
there is a continuum ambiguity and that while, in principle, this may be removed by 
specifying the discontinuity on a piece of the cut, in practice this is of no use because 
the numerical analytic continuation involved is not adequately stable, except with data 
of incredible precision. Most practical analyses find this ambiguity in single-energy 
fits and resolve it by requiring the amplitude to vary smoothly with energy; this is, of 
course, an unexceptionable requirement, but we must see if it is indeed enough to give a 
unique solution. It is fairly obvious that it is not, as we shall now show. 

We have seen that at each energy the phase ambiguity allows a continuum of ampli- 
tudes for a given cross section; the true amplitude is a point in this continuum at each 
energy, giving a point in the island of ambiguity on each Argand plot. This true point 
moves, of course, smoothly with energy. However, it is self-evident that there is an 
infinite number of other smooth paths, lying entirely within the islands of ambiguity, 
which diverge in their different ways from the true amplitude. So smoothness is not 
enough; one must impose more stringent constraints in order to achieve more. Three 
methods have been commonly used in practice : the 'shortest-path method', specific 
analytic parametrizations, and methods based on dispersion relations of various kinds. 
We shall now look at the soundness of each of them. 

6.1. The shortest-path method 

This approach has been the most popular in the past (Johnson 1967). As its name 
implies, it seeks the sequence of single-energy amplitudes which sweep out the shortest 
path in a space defined by the real and imaginary parts of all the partial-wave ampli- 
tudes used. The path length is defined by 

wherefi(E,, in) is the j th  possible solution in the single-energy analysis at energy E,. 
The weights wz may be chosen to discourage fast movements in the small higher partial 
waves more than in the lower waves. 

For a situation with a discrete set of not too many alternative solutions at each 
energy, this method is an obviously sensible one for ensuring continuity with energy. 
However, once one recognizes that the discrete set is a fortuitous result of the sharp 
cut-off at L, which is statistically acceptable because of the finite data errors, and that 
the underlying continuum ambiguity is continuous, it seems a sweeping assumption 
that nature always chooses the shortest path. Clearly a shortest path will exist and it 
will define a unique solution, but there is no reason why it should have any relation to 
the right amplitude. 

Even as a frank dynamical assumption, the shortest path seems dubious. We know 
of a number of situations where amplitudes have a form which does not correspond to 
the shortest path in this sense. For example, the Regge pole amplitude 

~ ( s ,  t )  = ~ ( t )  (f~"'"' exp (im(t)) (6.2) 

75 
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Figure 14. Regge exchange. An example of phase behaviour which is not of the shortest-path 
type. 

is a dynamical model, which almost certainly describes quite well some processes at 
moderate and high energies. I t  corresponds to partial-wave amplitudes which move 
with energy in a coherent circular way, as shown in figure 14. The movement is 
vaguely reminiscent of resonance motion. It is manifest that this is not shortest-path 
behaviour-if the phase factor exp (im(t)) were replaced by a constant, the movement 
would be less-but there are good dynamical reasons, based on the analytic structure of 
the amplitude as a function of energy, for believing that this factor must be there. 

This example simply makes the point that a richer phase structure can occur, which 
increases path length without changing the modulus of the amplitude. It may be 
argued (it may indeed even be true) that the consistency of the present view of the 
hadron spectrum shows that the phase structure of the amplitude is as simple as is 
consistent with general principles. This in turn minimizes the number of resonances. 

Figure 15. Failure of the shortest-path method in a simulated phase-shift analysis. 
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However, it is a sophisticated view of the present hadron spectrum to say that it 
represents a minimum number of resonances; it is also clearly a dynamical assumption 
and not of the reliability that we traditionally associate with phase-shift analysis. 

Recently Dean et aZ(1975) have shown explicitly that this is so by using the shortest- 
path method in a phase-shift analysis of simulated data generated from a known 
amplitude; the shortest-path solutions are not the correct ones. Figure 15 shows two 
shortest-path solutions quite different from the true amplitude. 

6.2. Explicit analytic parametrizations in energy 

Other approaches tend to work by assuming an analytic structure for the amplitude 
as a function of energy. The simplest of these takes a specific functional form, with a 
number of free parameters, usually for the partial-wave amplitudes. 

An early favourite was to assume that each wave consisted of a slowly varying 
polynomial background, with or without some Breit-Wigner resonance terms, so that, 
for example, 

This parametrization has some dynamical basis in that resonances do have Breit- 
Wigner shapes in simple cases and, in the absence of any sound neutral method, there 
is something to be said for it. Unfortunately, in order to get a unique fit in practice, the 
number of parameters must be restricted beyond what is manifestly sensible, only a few 
resonances being allowed in each energy range, with tightly restricted backgrounds. 
In  addition, the Breit-Wigner form is reliable only for narrow, isolated resonances and 
is distorted in different ways by the background; for broader resonances the resonance 
parameters show energy dependence. 

It is nowadays more fashionable to parametrize the partial-wave amplitudes with 
functions that have a less obvious physical interpretation, in order to avoid making 
assumptions about which waves are likely to resonate in a particular region. For 
example, the phase shifts 61(E) and inelasticities yz(E) may be expanded as polynomials 
in energy, usually of fairly low order. Clearly this sort of approach can remove the 
ambiguity problems by restricting the parametrization until a unique result is found. 
The fit will be good as long as the parametrizations stay reasonably close to a point in 
the ambiguity continuum, but there is no reason why it should be the true point. A 
neutral parametrization is as much a model for the amplitude as any other ; it does not 
seem a virtue that it is a model without dynamical motivation. 

I t  seems to us that specific parametrizations must gain some benefit from including 
sound dynamical assumptions in their parametrizations, rather than using ad hoc 
mathematical forms. This result is obvious, once one recognizes that neutral methods 
cannot remove the continuum ambiguity, which can only be resolved in the context of 
a particular model. 

6.3. Discrete ambiguities and energy dependence 

Much has been made in some practical analyses of the resolution of discrete ambi- 
guities of the Gersten (1969) type by imposing continuity requirements on the zeros of 
the amplitude or otherwise. Barrelet (1972) and co-workers, in particular, have develop- 
ed procedures for checking the smoothness of energy behaviour in this way. These 
procedures are useful in helping the analyser to avoid taking the wrong turning, 
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particularly when a zero of the amplitude comes close to or crosses the physical region, 
but because they ignore the fact that the true ambiguity is a continuum, they are more 
relevant to the artificial problem of polynomial amplitudes than to the real situation. 
However, some of the techniques are of interest and we shall discuss this briefly. 

We have seen that the zeros of amplitudes in the complex x ( = cos 0) plane seem to 
be intrinsically involved in the question of ambiguities. If we knew with certainty the 
number and location of the zeros this would clearly restrict the forms and multiplicity 
of allowed amplitudes. It is, however, apparent that this knowledge alone, even if it 
were available, could not give uniqueness. For if we take an amplitudef(x) which fits 
the data and has a given number of zeros then exp (i+(x))f(x) has the same zeros, 
provided that +(x) is analytic in the same region asf. Indeed, some of the amplitudes 
showing continuum ambiguities which have already been constructed possess identical 
zeros. 

Nonetheless, there are ambiguities, such as those suggested by Gersten (1969), or 
in a more general form by Barrelet (1972), in which one or more complex zeros in the 
amplitude are replaced by zeros at the complex conjugate points. Such zeros may be 
useful to consider in trying to follow the behaviour of an amplitude over a range of 
energies. 

Since we believe the amplitude to be analytic in both x and the energy variable, a 
zero in the complex z plane should vary smoothly as the energy changes. Thus a phase- 
shift analysis amplitude at one energy may be linked onto one at a neighbouring energy 
by requiring the positions of the zeros to change only slightly. 

In  any attempt to make use of this continuity of zeros a distinction can be made 
between two groups of zeros: the set of zeros which lie rather close to the physical 
region and those sited further away. The first group of zeros close to the physical 
region are closely tied to the minima of the differential cross section; if there are 
reasonably sharp dips the zeros will be nearby in the complex plane. The second set, 
called ‘statistical’ zeros by Barrelet are different in that they depend strongly on experi- 
mental errors and the number of terms used in the polynomial expansion of the 
amplitude. We ought, therefore, to concentrate on those stable zeros closer to the 
physical region. 

Figure 16. Zeros in the complex plane for KK scattering from 17.6 to 35 MeV 
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T o  get an indication of what the trajectories of such zeros may look like figure 16 
shows the trajectories of two of the zeros resulting from phase-shift analysis of aa 
scattering between 17.6 and 33 MeV. (Due to the symmetry the amplitude is a 
function only of z2 and the zeros are therefore plotted in the z2 plane.) 

However, de Roo (1974) found that by conjugating either of these zeros over a 
range of energy equally acceptable unitary amplitudes resulted. An example of what 
can happen is shown in figure 17. 

Figure 17. An example of how a zero track may divide. 

Over the energy range covered between A and B only one amplitude may be 
allowed by unitarity but then over BC(BD) zero-conjugation also gives rise to two 
acceptable unitary amplitudes. In  phase-shifting the cross section, if we find that we 
have suddenly jumped from P to Q at neighbouring energies we would realize that a 
zero has been conjugated and switch back to the top trajectory. 

There are a number of points which should lead us to be cautious with regard to 
using zeros. One is the method by which they are treated. This is normally done by 
first performing a PSA and then numerically identifying the zeros of the resulting 
polynomial. In  so far as the coefficients in the phase-shift amplitude are sensitive to 
the number of partial waves kept, so the location of the zeros will be uncertain. Even 
the existence of a dip in the differential cross section is not necessarily a guarantee of a 
zero nearby. In  locating the zeros in pion-pion scattering Pennington and Proto- 
popescu (1972) used only a quadratic form for the amplitude even at moderate energies. 
One can easily verify that the addition of small higher-order terms markedly changes 
the positions of the zeros (Lutterodt 1973). 

As continuity of the zeros is closely related to energy smoothing another important 
point is how one gets onto a particular zero trajectory to start with. If, as in figure 17, 
the trajectory breaks smoothly into two branches when the imaginary part of the 
position of the complex zero is small the choice of up or down cannot be made on an 
objective basis. 

Parametrization of the amplitude directly in terms of a product of zeros has 
advantages if one believes them to be definitive in specifying the amplitude. Unfortu- 
nately, this has the disadvantage of making unitary bounds in individual partial waves 
difficult to maintain. 

In  conclusion we should re-emphasize that the tracking of zeros in no way helps the 
central problem of the continuum ambiguity. 

6.4. Energy parametrizations using dispersion relations 

Finally, there is a whole class of energy-smoothing procedures based on imposing 
analytic behaviour in the energy by using dispersion relations of various kinds. 
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Dispersion relations have been used to define a smooth path through the sets of phase- 
shift solutions at each energy ever since phase-shift analysis was boldly extended into 
the inelastic region in the mid-1960’s. One of the first such analyses, by Donnachie 
et aZ(1968), used partial-wave dispersion relations in this way. At that time there was 
no conscious awareness of the continuum phase ambiguity (the many single-energy 
solutions found were generally ascribed to defects in the data), and so the problem of 
finding wrong, alternative solutions was ignored. 

We should now require a justification of any given procedure as at least being 
capable of giving a unique correct solution with ideal data. No such proof exists for 
any of the currently used procedures. In  general, it is hoped that by including sufficient 
dynamical constraints of a sensible kind the true solution will emerge and, if it is 
accepted that phase-shift analysis is inevitably model-dependent, this is a sensible type 
of model to use. If, however, we reserve the title ‘phase-shift analysis’ for procedures 
which do not depend on detailed dynamical assumptions, we must be more careful. In 
particular, we must bear in mind the problems of numerical analytic continuation, 
discussed in the last section, and not rely on consequences of analytic behaviour which 
imply the analytic continuation of numerical information. 

Very recently, however, Burkhardt and Martin (1975) have tried another approach 
to the use of analytic properties, which seems to offer hope of a justification of one of 
the phase-shift procedures-that based on fixed-momentum-transfer dispersion 
relations. The aim is to get uniqueness from the general analytic structure of the 
amplitude without any specific analytic extrapolation of numerical information from 
one region to another. For example, if the amplitude were a polynomial in z, we know 
that the ambiguity would be at most a discrete one and easy to eliminate in practice. 
Unfortunately, perhaps, it is not a polynomial. However, we know many properties 
which the amplitude does have which are not built into phase-shift analyses. The  aim 
is to find a set of such assumptions which ensures uniqueness, first with perfect data 
and then in a practical analysis with error stability taken into account. Burkhardt and 
Martin looked for such assumptions for perfect data but with a view to numerical 
stability. In  particular, they avoided using elastic unitarity as far as possible because 
the information it contains, though ensuring uniqueness with perfect data, is rapidly 
lost under continuation to higher energies. Instead, they aimed at a maximum use of 
analyticity. Burkhardt (1972) had already shown that analyticity in one variable, x ,  was 
not enough (numerical information on the cut discontinuity was needed), so they looked 
at the amplitude as a function of two variables. I n  practice, this implies fitting data at 
all energies and angles at the same time (which is a daunting computational prospect, 
but one which is already being faced). 

Their results are roughly these. First, they show that imposing the full analytic 
structure in both energy and momentum transfer, together with the modulus of the 
amplitude throughout the physical regions of all three crossed channels (see figure 2), 
still allows a continuum of amplitudes A, whose ratio, R, to the true amplitude has the 
form, for equal masses of the scattered particles, 

A 
A 

M(s, t, U) + [(4& - s)(4m2 - t)(4m2 - U ) ] l / 2  

- M(s, t, U) - [(4m2 - s)(4m2 - t)(4m2 - U ) p  
RE.-= -+ - 

where M(s, t, U) is an arbitrary real meromorphic function (it only has poles as singu- 
larities in the product of the finite complex planes of the two independent variables, 
but is otherwise free), Notice that the ratio is such that, because the square root is 
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imaginary in the physical regions and real outside, IR I = 1 in the physical regions. It 
also ensures that the amplitudes continue to satisfy the reality condition 

A"(s", t*, U") = A(s, t ,  U) (6.5) 

as long as M does, as well as the analytic assumptions. In  short, this result shows that a 
little bit of analyticity is not enough and even the fullest realistic restriction on the 
location of singularities leaves one far from uniqueness. 

Secondly, they imposed, in addition to the analytic properties, positivity of the 
imaginary part of the amplitude in the 'strip' beyond the forward direction 0 < t c 4p2, 
where 2p is the lightest exchanged mass, as in pion-nucleon scattering. T o  cover this 
case they only assumed data, and thus IRI = 1, in the s- and u-channel physical regions. 
Under these circumstances the general form for M is 

which contains five arbitrary functions of the variable t ,  analytic in the full domain of t 
at fixed s. Positivity follows from the unitary bound on the partial-wave amplitudes, 
but is a weaker assumption than that. It has the practical advantage of being a linear 
property, unlike unitarity. It is powerful because it restricts the number of zeros that 
the amplitude can have, and the phase ambiguity is closely linked to the zeros of the 
amplitude. If there are no zeros of A, you can write a dispersion relation for In A ,  
whose real part is the modulus and whose imaginary part is the phase of A, and which 
determines one in terms of the other. 

Still, you see that something further is needed to give R= 1 as the general form 
and uniqueness. Let us mention two cases. First, in the case with complete crossing 
symmetry so that the scattering in all three channels is the same, (6.6) reduces to 

M =  a + b(@+ t2+ u2) + cstu 

which has just three real constants to be found. TOTO+ TOTO is an example of such a 
simple system. The simplest way to fix these is to include the data on the total cross 
section and to use the forward dispersion relation (2.28) and the optical theorem. These 
give you the phase in the forward direction, requiring a = b = c = 0 and R = 1, 

In the more general case of pion-nucleon scattering you need something more. 
This can be supplied by the general constraint that elastic unitarity (here it is at last) 
imposes at threshold, which requires the imaginary part of the amplitude to be 
smaller than the real part in a particular way, Since the unknown functions in (6.6) are 
independent of the energy, this constraint at the s- and u-channel thresholds proves 
enough to eliminate the ambiguity. 

The  first impression of these results is negative. The range of restrictions and the 
practical implications are both forbidding. The  construction of a formalism which 
embodies these requirements will not be easy. The  error analysis implied in 
checking its stability with respect to finite errors in the input data, its extrapolation to 
high energies, and the truncation of the expansions involved, may be possible only by 
simulation techniques. The  simultaneous fitting of data at different angles and at all 
energies will provide massive computational problems. Nonetheless the situation is not 
altogether without hope, as we shall see later. It is, of course, possible that a different 
set of less forbidding conditions will be found in the future. 
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6.5. Partial-wave dispersion relations 

The earliest use of dispersion relations in phase-shift analysis was the inclusion of 
partial-wave dispersion relations in the analysis of Donnachie et aZ(l968). It followed 
on extensive phenomenological applications by Hamilton and various collaborators 
which are reviewed in Hamilton (1967). The cut structure of the partial-wave 
amplitude fz(s)/q21 is shown in figure 18. The real and imaginary parts on the right- 
hand physical cut can be taken from phase-shift analysis up to its highest energy, and 
above that a model discontinuity is used. The  left-hand cuts correspond to crossed 
channel effects due to the exchange of particles. The nearby cuts can be approximately 
calculated, but the rest of the cut must be parametrized. The dispersion relations are 
evaluated at points in the phase-shift region and compared with the real parts from the 
phase-shift analysis. The threshold factor q 2 1  has the effect of reducing the contribu- 
tions from the distant parts of the integral in the high partial waves. Those sets of 

Figure 18. Singularity structure of a partial-wave amplitude. 

solutions at each energy were selected which satisfied the dispersion relations mos 
nearly. The method worked to produce some of the first information on the hadron 
resonances, which now forms such an important part of our picture of elementary 
particle physics. 

It was clear from the beginning, however, that there were problems of a deep as well 
as a practical kind. Practically the method was extremely laborious, since it involved, 
in principle, testing all possible combinations of alternative solutions at every energy 
used in the analysis. Later, the CERN group abandoned it as a method of primary 
smoothing and used the shortest-path method, which took into account only two 
energies at once, when they found that this gave much the same results; they retained 
the dispersion relations as a way of producing an analytically smoothed amplitude. On 
a deeper level, it did not prove possible to find solutions to the dispersion relations which 
gave a reasonable fit to the data if the number of parameters was small enough for the 
fit to be unique. This was partly due to inconsistencies in the data but is exactly what 
one expects to find in a continuum ambiguity situation, where the parametrization must 
be overconstrained to get uniqueness. 

The  real difficulty with the partial-wave dispersion relations lies in their left-hand 
cuts, which involve integrals over the amplitude in the spectral regions, where two 
kinematic variables are positive. Once one gets to high energies, and thus far from the 
physical regions, these left-hand cuts can only be predicted from models or para- 
metrized in a general way, which in practice has to be too tightly restricted. The  early 
hope was that only the nearby singularities, which can be calculated at least roughly, 
were important but this has been shown to be untrue by the failure of models based on 
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that hope to fit the data, and by the discovery of the rise of the Regge trajectories of 
particles to high angular momentum values. 

6.6. Fixed-momentum-transfer dispersion relations 

Finally, we come to the use of fixed-t dispersion relations in phase-shift analysis of 
data in the s and U channels. Such dispersion relations have long been used as part of 
the S-matrix approach to dynamical calculations and, indeed, were combined with the 
assumption of Regge-pole dominance of asymptotic behaviour (as in Phillips 1966) to 
give the so-called finite energy sum rules which formed the basis of the self-consistent 
approach to hadron dynamics called duality. 

Their use in phenomenology is also well established. They have the great advan- 
tage that, for small negative t at least, the line of integration lies entirely within the 
physical region, except for a small region between threshold and the lowest energy for 
which the t value is physical in the s and U channels. In  this region the imaginary part 
is calculated by extrapolating the truncated partial-wave expansion of the low-energy 
phase-shift analysis. More recently, Hohler and Jakob (1974), for example, have used 
such relations as a constraint to distinguish between different phase-shift solutions. 
However, in none of these cases is the dispersion relation used to try to remove the 
continuum ambiguity, since in each case the phase-shift analysis has already found a 
specific result. The  dispersion relation is then simply a test of the consistency of these 
results. 

In  the last few years there has been an effort, particularly by Pietarinen (1972), 
aimed at developing a procedure for finding the amplitude from the data, in which 
fixed-t dispersion relations are the means of ensuring smooth energy variation based on 
analyticity. I n  essence, the forward amplitude is fixed by the forward ( t  = 0) dispersion 
relation and the analysis extended in small steps to negative t. At each step, the 
modulus of the amplitude is fixed by the data and the dispersion relation constraint is 
applied. The continuation in t is by means of a truncated partial-wave expansion for 
I m  A.  Thus data at all energies and a range of t are fitted simultaneously. 

This method can be related directly to the result of Burkhardt and Martin (1975), 
since Martin (1966) has shown that if an amplitude satisfies a fixed-t dispersion relation 
for a range of negative t, - T < t < 0, and if the partial-wave expansion in z6 implied 
converges and satisfies both positivity and a bound 1 fil< 1, then the amplitude is 
analytic in s in the strip - T < t < 4m2, and further satisfies the Froissart bound at high 
energies utot < c ln2 s. With the addition of the threshold constraint, these are 
sufficient conditions for the uniqueness theorem to hold. 

More analysis of Pietarinen’s procedure is necessary before one can decide whether 
it really conforms to all these constraints. The  analytic continuation in zt is truncated- 
one must show that the amplitude errors resulting are stable and sufficiently small 
under this truncation. Bowcock and Ng (1970) have shown that in certain circum- 
stances instabilities are a problem. The  data on differential and total cross sections 
cannot be measured up to arbitrarily high energies; the stability under errors in these 
extrapolations must be checked, This could be a source of difficulty since the restricted 
range o f t  used so far, It I < 1 GeV2, does not specifically include the quite rich structure 
of secondary peaks in the high-energy data but which are clearly part of the two- 
variable information that the uniqueness proof implies. Pietarinen has begun an error 
analysis of his method, which is also discussed in detail by Hamilton and Petersen 
(1975) in their review of modern developments along these lines. It may be that it can 
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be completed analytically but one may need to fall back on testing the method on 
simulated data, along the lines developed by Burkhardt et al (1974). This in itself 
would be a massive task to do properly and it must be stated, once again and with 
regret, that we are still without an authenticated method of inelastic phase-shift analysis. 

7. The complications of spin 

It is with the process of deducing amplitudes from data relating to elementary 
particles that we are mainly concerned and since the normal target is a nucleon the 
additional complications due to spin must be looked at. So in this section we shall 
extend the results of the previous sections to the case of spin 0-spin 4 scattering. This 
will therefore cover the nN and KN systems from which phase-shift analyses have 
extracted many of the well known particle resonances. The  nucleon-nucleon system is 
far more involved, with five independent amplitudes for each charge state and will not 
be treated here. 

Lorentz invariance implies that a spin 0-spin 4 system may be described by two 
complex-valued functions of energy f~(s, x) and fi(s, x). However, although we have 
more amplitudes there are more experimental quantities to be measured. We may list 
these as the differential cross section 

the polarization 
d a  
-- P =  (1 - z2)1/2 2Im [(fl + zf2)f2*], dS2 

and double-scattering experiments also determine the quantities 
R = 2( 1 - x2)1/2 Re [(fi + xfi)f2"] 

A= If1+zfz12- Ifi jZ(14).  
It is worth noting here that it is possible to use an elegant formulation, due to 

Barrelet, to combine the two amplitudes f1 and f2 into a single analytic function. 
Although this is convenient for investigating continuum ambiguities when only the 
transformation (T)  is considered, there are difficulties when alternative transformations 
(X) are to be discussed. We shall therefore treatfl andfi as separate functions. 

Since each of these measurements is a bi-linear form of the amplitude it is clear that 
by themselves they can only determinefi and fz up to a common phase factor which 
may be a function of both s and z, ie the replacements 

leave the experimental quantities unchanged. 
fl +fl exp (id(& z)), fz 'f2 exp (i+(s, 2)) (T)  (7.1) 

Unitarity may be imposed through partial-wave decompositions 

f1= c (fa+l/zPz+l'(z) -f2-1/2P2-1'(4) 
f2 = c (f2-1/2 -f2+1/z)Pz'(z) 

where 

with qlrt1p = 1 in the elastic region and 0 < v z i 1 / 2  < 1 above the inelastic threshold. 
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For the elastic region a generalization of the contraction mapping method used in 
the spinless case leads to a similar result. If do/dsl and P satisfy certain inequalities 
then it may be shown that there exist unique amplitudesfl(x) and f4z)  which give rise 
to the measured values of do/d!J, P, A and R. So, at energies below the inelastic 
threshold, and in particular at very low kinetic energies where these inequalities are 
met, we can be confident that accurate experiments lead to the determination of reliable 
amplitudes. 

For energies above the inelastic threshold there is again a continuum set of ampli- 
tudes corresponding to the same measurable quantities. The  nature and extent of these 
depend on whether all the possible experimental quantities are measured or, as is more 
common, just dajdsl and P. If all are measured and used in the amplitude analysis 
then as in the spinless case, apart from the trivial ambiguity, the most general type is 
that given in (7.1). 

However, if no double-scattering experiments are performed, so that only dujdsl 
and P are used it can be seen that the data are also invcriant under the transformation 

[Refi+exp (io) Ref21 -+ exp (ix(z)) [Ref i fexp  (i6) Ref21 
and 

[Imfi +exp (io) Imfi] --f exp (ix(z)) [Imfi + exp (io) Imfi]. 

Thus the allowed amplitudes will be even more numerous and greater ambiguities will 
occur. This transformation is a generalization of those that can be constructed by 
taking a product of any two of the following transformations: 

f I ( 4  -ff1"(z), fi(4 -+ -f2"(.) : reflection 

fI(Z) -+ Zfl - (1 - z2)1'72(4, 
f I ( 4  -+f1(z>, fi(4 -+ : Yang. 

f2(z) -+ -(1 -x2)1'2fi(z)-zfz(x): Minami 

Each of these keeps the differential cross section unchanged but changes the 
polarization. A product of any two therefore leaves dajdsl and P unchanged. It can 
easily be verified that particular choices of constant x(z) give rise to these transforma- 
tions (Bowcock et al 1971). 

Calculations on the extent of the second type of ambiguity where only da jdn  and P 
are used indicate that the ambiguity lines in this case are somewhat different in 
character, tending not to lie on such circular arcs as in the simple phase transformation 
(7.1). In  fact, these results question the existence of the resonances that are not so well 
established. 

8. Conclusions 

We hope we have shown that while phase-shift analysis in the elastic region is a well 
defined and reliable procedure which will yield the scattering amplitude from the 
experimental data with only a few discrete alternative solutions at most, no reliable 
inelastic phase-shift analysis has been convincingly justified. Numerical studies show 
that the uncertainties in the amplitude produced by the continuum ambiguity are 
serious, though they are less dramatic in the crucial case of pion-nucleon scattering 
than elsewhere, in so far as they have been explored. While many of the methods of 
energy smoothing which have been used to find a unique amplitude are quite arbi- 
trary, there now exists a possible basis for a justification of the method of multi-energy 
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analysis based on fixed-momentum-transfer dispersion relations as a sound route to the 
true amplitude. 

The  beautifully consistent picture of the baryon spectrum which has emerged from 
the phase-shift analyses of the last ten years remains something of a surprise, in view of 
the continuum ambiguity problem. It lends support to the numerical observation just 
mentioned, that the continua are less serious in this process in the energy range so far 
covered. There seems little doubt, however, that any detailed study of weaker 
resonances, daughter states and other subtler features of the scattering amplitude 
should await a more clearly reliable procedure than has been used in the past. 
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