A Criterion for the Equivalence of Formal Singularities
Author(s): Konrad Möhring and Duco van Straten
Published by: Johns Hopkins University Press
Stable URL: http://www.jstor.org/stable/25099160
Accessed: 04-12-2015 10:55 UTC

REFERENCES
Linked references are available on JSTOR for this article:

You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
A CRITERION FOR THE EQUIVALENCE OF FORMAL SINGULARITIES

By KONRAD MÖHRING and DUCO VAN STRATEN

Abstract. We prove a generalization of the finite determinacy theorem for isolated singularities. The maximal ideal occurring in the finite determinacy theorem is replaced by any ideal annihilating the first cotangent cohomology of a formal singularity over a Noetherian ring. An analogous result holds for finitely generated modules. As an application we give a criterion for the algebraizability of formal singularities and modules.

0. Introduction. In this paper we give a criterion for certain algebras over a noetherian ring S to be isomorphic, Theorem 1.1. Informally speaking, the criterion is the following stability assertion. Let the first cotangent cohomology $T^1(R/S)$ of $R = S[[x_1, \ldots, x_n]]/I$ be annihilated by some power of an ideal a. Then any $S[[x_1, \ldots, x_n]]/J$, such that generators of J and relations among the generators are congruent to generators and relations of I modulo a sufficiently high power of a, is right equivalent to R. If R is an isolated singularity over the field k, $T^1(R/k)$ is always annihilated by some power of the maximal ideal (x_1, \ldots, x_n), because the support of $T^1(R/k)$ is contained in the singular locus; so this generalizes known results on isolated singularities.

For a list of references on the subject, we refer to the introduction of [CS93]. Our proof is similar to Hironaka’s proof of a criterion for the equivalence of isolated singularities sketched in [Hir69].

Just as for isolated singularities in Artin’s paper [Art69, Th. 3.8], we deduce from our criterion the algebraizability of a certain class of singularities, Theorem 1.3. This class includes the isolated singularities, generalizing Artin’s result. Theorem 1.5 is the analogue of our main theorem for finitely generated modules over a field.

We will use the notation $P = S[[x_1, \ldots, x_n]]$ throughout. We recall that the first cotangent cohomology $T^1(R/S)$ of an S-algebra $R = P/I$ is the cokernel of the natural map $\text{Der}_S(P, P) \rightarrow \text{Hom}_P(I, R)$.

1. Results. Our main theorem is this:

THEOREM 1.1. (Equivalence of singularities) Let S be a noetherian commutative ring with 1, $P = S[[x_1, \ldots, x_n]]$ and $a \subset P$ an ideal such that $1 - x$ is invertible.
for all \(x \in \mathfrak{a} \) and \(P \) is \(\mathfrak{a} \)-complete, i.e., \((P, \mathfrak{a})\) is a complete Zariski ring. Let \(I \subset P \) be a proper ideal and write \(R := P/I \). Assume that \(\mathfrak{a}^a T^1(R/S) = 0 \) for some \(a \in \mathbb{N} \). For an exact sequence of \(P \)-modules

\[
P' \xrightarrow{G} P^a \xrightarrow{F} P \to R \to 0,
\]

there exist constants \(a_F, a_G \) and \(b \), such that the following holds: If \(c \in \mathbb{N}_0 \), \(F' \) and \(G' \) are matrices whose entries are congruent to those of \(F \) and \(G \) modulo \(\mathfrak{a}^{a_F+c} \) and \(\mathfrak{a}^{a_G} \) respectively, and if \(F' \circ G' = 0 \), then there is an automorphism \(\Phi \) of \(P \) over \(S \) which is congruent to the identity modulo \(\mathfrak{a}^{a_F+c-b} \) and carries the ideal \(I' := \text{Im}(F') \) onto \(I = \text{Im}(F) \).

In particular, the theorem is valid if we choose \(a \) to be the following ideal \(H_I \), which can easily be computed from the given data.

Definition 1.2. Let \(\text{Jac}(F) \) denote the jacobian matrix of partial derivatives of \(F \). If \(A, B, C, D \) are subsets of indices, let \(G_{AB} \) and \(\text{Jac}(F)_{CD} \) denote the corresponding submatrices.

We define the ideal \(H_I \subset P \) to be generated by

\[
\{ \det(G_{AB}) \cdot \det(\text{Jac}(F)_{CD}) \mid \#A = \#B = p, \quad \#C = \#D = s - p \quad \text{and} \quad A \cup D = \{1, \ldots, s\} \}.
\]

The ideal \(H_I \) or rather \(H_I + I \) describes the nonsmooth locus of \(R \) over \(S \). Since the cotangent cohomology has support in the nonsmooth locus, a power of \(H_I \) annihilates \(T^1 \). Following Artin, [Art76, Part II], we outline a direct proof: Consider the complex

\[
R' \xrightarrow{G \otimes R} R^a \xrightarrow{\text{Jac}(F) \otimes R} R^a.
\]

Localizing at a prime \(p \supset I \) gives a split sequence iff \(H_I \subset p \). In this case the dual complex of (1) is also a split sequence. In particular it is exact. Now \(T^1(R/S) \) is the homology of this dual complex, so \(T^1(R/S) \) is annihilated by some power of \(H_I \).

The special case of Theorem 1.1 for an ideal defining the nonsmooth locus has already appeared, slightly modified, in [CS97, Th. 4.4]. However, our theorem is stronger, since the support of \(T^1 \) can be smaller than the nonsmooth locus, e.g. for rigid singularities.

Now we consider the special case that \(S \) is a field and \(a = m = (x_1, \ldots, x_n) \). Following Artin's proof for isolated singularities [Art69, Th. 3.8], we deduce the algebraizability of singularities with \(\dim_k T^1(R/k) < \infty \).

Theorem 1.3. Let \(k \) be any field. Let \(I \subset m \subset P = k[[x_1, \ldots, x_n]] \) be an ideal, \(R := P/I \) and \(\dim_k T^1(R/k) < \infty \). Let \(H = k\langle x_1, \ldots, x_n \rangle \) be the Henselization of the
polynomial ring at the maximal ideal \((x_1, \ldots, x_n)\), i.e., the ring of algebraic power series.

Then there is an ideal \(J \subset H\) and a formal automorphism \(\Phi\) of \(P\), which transforms the completion of \(J\) into \(I\):

\[
\Phi(\hat{J}) = I.
\]

Proof. The condition \(\dim_k T^1(R/k) < \infty\) is equivalent to \(m^a T^1(R/k) = 0\) for some constant \(a\). We choose a representation

\[
P^s \xrightarrow{G} P^r \xrightarrow{F} P \rightarrow R \rightarrow 0
\]

of \(R\). So if \(F = (f_i)\) and \(G = (g_{ij})\), we have generators \(f_1, \ldots, f_s\) of \(I\) and relations \(\sum_i f_i g_{ij} = 0\). The \(f_i\) and \(g_{ij}\) are solutions of the following system of equations in the unknowns \(Y_i, Y_{ij}\):

\[
\sum_{i=1}^s Y_i Y_{ij} = 0, \quad j = 1, \ldots, r.
\]

Now we make use of the Artin approximation theorem as stated in [KPR75, Satz 5.2.1, (4)]:

Theorem 1.4. (Artin Approximation Theorem) Let \(H = k(x_1, \ldots, x_n)\) be the Henselization of the polynomial ring at the maximal ideal \((x_1, \ldots, x_n)\). We assume \(y(x) \in P^N\) to be a solution of a system of polynomial equations in \(N\) variables over \(H\). Let \(k\) be any number. Then there is an algebraic solution \(y(x) \in H^N \subset P^N\), approximating the given solution up to order \(k\):

\[
y(x) \equiv y(x) \equiv 0 \mod m^k.
\]

Choosing \(k\) to be bigger than the constants \(a_F\) and \(a_G\) in the theorem, we are done.

By essentially the same proof as for Theorem 1.1 we obtain the following statement for finitely generated modules.

Theorem 1.5. Let \(M\) be a finitely generated module over \(P = k[[x_1, \ldots, x_n]]\) with \(a^a \text{Ext}^1(M, M) = 0\). Fix a representation

\[
P^r \xrightarrow{G} P^s \xrightarrow{F} P^t \rightarrow M \rightarrow 0
\]

of \(M\), where \(G\) and \(F\) are matrices with entries in \(P\). Then there are constants \(a_F\), \(a_G\) and \(b\) such that the following holds: If \(F'\) and \(G'\) are matrices whose entries are congruent to those of \(F\) and \(G\) modulo \(a_F^{ac}\) and \(a_G^{ac}\) respectively, \(c \in \mathbb{N}_0\) and if...
$F' \circ G' = 0$, then there is an automorphism of P' which carries $\text{Im}(F')$ onto $\text{Im}(F)$. The automorphism is congruent to the identity modulo a^{a_F+c-b}.

Corollary 1.6. A finitely generated module over $P = k[[x_1, \ldots, x_n]]$ with the property $\dim_k \text{Ext}^1(M, M) < \infty$ is algebraic, i.e., the completion of a module over the ring of algebraic power series $H = k(x_1, \ldots, x_n)$.

2. Proof of Theorem 1.1. We denote the entries of the matrices F and G by f_i and g_{ij} respectively. The exact sequence

$$
P^* \xrightarrow{G} P^* \xrightarrow{F} I \xrightarrow{0}
$$

gives us an embedding of the normal module $N = \text{Hom}_P(I, R)$ into R^*:

$$
0 \rightarrow \text{Hom}_P(I, R) \xrightarrow{F^*} \text{Hom}_P(P^*, R) \xrightarrow{\cong} R^*,
$$

where $n \mapsto F^*(n) \mapsto (n(f_1), \ldots, n(f_s))$.

The entries of F' and G' are

$$
\begin{align*}
(2) & \quad f'_i = f_i + \phi_i, \quad \phi_i \in a^{a_F}, \\
(3) & \quad g'_{ij} = g_{ij} + \gamma_{ij}, \quad \gamma_{ij} \in a^{a_G},
\end{align*}
$$

with $a_F, a_G \geq 0$. We will give explicit lower bounds for a_F and a_G later on in the proof. We have assumed that

$$
0 = \sum f'_i g'_{ij} = \sum f_i g_{ij} + \sum \phi_i g_{ij} + \sum f_i \gamma_{ij} + \sum \phi_i \gamma_{ij}.
$$

The first summand is zero, the third is in the ideal $I = (f_1, \ldots, f_s)$ and the fourth is an element of $a^{a_F+a_G}$. So $\bar{n}(f_i) := (f'_i - f_i) = \phi_i$ defines a P-module homomorphism $\bar{n}: I \rightarrow P/(I + a^{a_F+a_G})$ with the property

$$
\bar{n}(f_i) = \phi_i + (I + a^{a_F+a_G}).
$$

We would like to find an element n in the normal module N of R, i.e., a homomorphism from I to $R = P/I$, that induces \bar{n}.

Proposition 2.1. Let P be any Noetherian ring, $a \subseteq P$ an ideal, and $\lambda: A \rightarrow B$ any homomorphism between finitely generated P-modules. Then there exists an integer $c = c(\lambda)$ with the following property: For all $x \in A$ and $p \in \mathbb{N}$ such that

$$
\lambda(x) \equiv 0 \mod a^{p+c} B
$$

This content downloaded from 134.93.142.226 on Fri, 04 Dec 2015 10:55:58 UTC
All use subject to JSTOR Terms and Conditions
there exists an $\bar{x} \in A$ such that

$$\lambda(\bar{x}) = 0$$

and $\bar{x} \equiv x \mod a^p A$.

Proof. Consider the submodule $\text{Im}(\lambda) \subset B$. By the Artin-Rees lemma (cf. [Eis95]), there exists an integer c such that

$$\text{Im}(\lambda) \cap a^{p+c} B = a^p (\text{Im}(\lambda) \cap a^c B).$$

So if $\lambda(x) \in a^{p+c} B$ we must have $\lambda(x) = \sum_i r_i n_i$ with $r_i \in a^p$ and $n_i = \lambda(m_i) \in \text{Im}(\lambda)$. Then $\bar{x} = x - \sum_i r_i m_i$ is just what we want. \hfill \square

Now we apply this proposition to the P-modules $A = \text{Hom}_P(P^s, P)$ and $B = \text{Hom}_P(P^r, R)$ and the homomorphism

$$\lambda: A \rightarrow B,$$

$$\phi \mapsto \phi \circ G \mod I.$$

Let's call the integer $c(\lambda)$ of the proposition c_1. Then we end up with $\bar{\phi}_i$ such that

$$\bar{\phi}_i \equiv \phi_i \mod a^{a_F + a_G - c_1}$$

with the property that

$$\sum \bar{\phi}_i g_{ij} \equiv 0 \mod I.$$

Hence these $\bar{\phi}_i$ describe an $n \in N = \text{Hom}(I, R)$ defined by

$$n(f_i) = \bar{\phi}_i + 1.$$

Let's assume we have chosen $a_G > c_1$. As $\bar{\phi}_i \equiv \phi_i \mod a^{a_F + a_G - c_1}$ by (4), this implies $\bar{\phi}_i \equiv \phi_i \mod a^{a_F}$ and since $\phi_i \in a^{a_F}$ by (2) this leads to

$$\bar{\phi}_i \in a^{a_F}.$$

We have embedded the normal module N into R^s by assigning to a homomorphism in N the s values on f_1, \ldots, f_s. So our n from (5) is mapped into $a^{a_F} R^s$. Applying Proposition 2.1 to the embedding $N \rightarrow R^s$, we obtain an integer c_2 depending only on the embedding, such that

$$n \in a^{a_F - c_2} N.$$
Next, we want to find a derivation \(\theta \in \text{Der}_S(P, P) \), whose restriction to \(I \) induces \(n \). The cokernel of the map from \(\text{Der}_S(P, P) \) to \(N \) is by definition \(T^1(R/S) \). We have assumed \(\alpha^a T^1(R/S) = 0 \), so \(\alpha^a N \) is contained in the image of \(\text{Der}_S(P, P) \) under this map. So \(n \) is induced by some

\[
\theta \in \alpha^{a_F-a-c_2} \text{Der}_S(P, P).
\]

This means we have the equalities

\[
n(f_i) = \theta(f_i) + I
\]

and by (4) and (5) this implies

\[
\theta(f_i) \equiv \phi_i \mod I + \alpha^{a_F+aG-c_1}.
\]

But as by (7) \(\theta \in \alpha^{a_F-a-c_2} \text{Der}_S(P, P) \) and by (2) \(\phi \in \alpha^{a_F} \), we also know

\[
\theta(f_i) \equiv \phi_i \mod \alpha^{a_F-a-c_2}.
\]

Applying the Artin-Rees lemma once more we find an integer \(c_3 \) such that

\[
\alpha^{p+c_3} \cap I = \alpha^p(\alpha^{c_3} \cap I) \subset \alpha^p I.
\]

We have chosen \(a_G > c_1 \). So \(a_F - a - c_2 < a_F + a_G - c_1 \) and (10) implies \(\alpha^{a_F-a-c_2} \cap (I + \alpha^{a_F+aG-c_1}) \subset \alpha^{a_F-a-c_2-c_3} I + \alpha^{a_F+aG-c_1} \). Combining this with (8) and (9) we get:

\[
\theta(f_i) \equiv \phi_i \mod \alpha^{a_F-a-c_2-c_3} I + \alpha^{a_F+aG-c_1}.
\]

We use the derivation \(\theta \) to construct an automorphism \(\Phi_{a_F} \) of \(P = S[[x_1, \ldots, x_n]] \) by setting

\[
\Phi_{a_F}(x_m) := x_m - \theta(x_m).
\]

From (7) we deduce the two obvious inclusions

\[
\theta(a^k) \subset \alpha^{a_F-a-c_2+k-1}
\]

\[
\text{and} \quad \Phi_{a_F}(f) \equiv f - \theta(f) \mod a^{2(a_F-a-c_2)} \quad \forall f \in P.
\]

We first notice that

\[
\Phi_{a_F} \equiv Id_P \mod \alpha^{a_F-a-c_2}.
\]
Further

\[\Phi_{aF}(f_i + \phi_i) = \Phi_{aF}(f_i) + \Phi_{aF}(\phi_i) \]
\[\equiv f_i + (\phi_i - \theta(f_i)) - \theta(\phi_i) \pmod{a^{2(aF-a-c_2)}} \]
\[\equiv f_i - \theta(\phi_i) \pmod{(a^{aF-a-c_2-c_3}I + a^{aF+c_2+c_1})} \]
\[\equiv f_i \pmod{a^{2aF-a-c_2-1}}. \]

The first congruence follows from (13), the second from (11) and the third from (12). If we choose \(a_G \geq c_1 + 1 \) and \(a_F \geq \max\{2a+2c_2+1, a+c_2+2, a_G+a+c_2+c_3\} \), we get

\[\Phi_{aF}(f_i + \phi_i) \equiv f_i \pmod{a^{aG}I + a^{aF+1}} \]
\[\Leftrightarrow \Phi_{aF}(f_i + \phi_i) = f_i + \psi_i + \phi_i'' \]\n\[\text{with } \psi_i \in a^{aG}I, \phi_i'' \in a^{aF+1}. \]

Consider the vector \((f_i + \psi_i)\). It can be written as \((f_1, \ldots, f_3) \circ (1 + \Psi_{aF})\), where \(\Psi_{aF} \) is a matrix with entries in \(a^{aG} \). Since \(P \) is \(a \)-complete, \(1 + \Psi_{aF} \) is invertible and describes an automorphism of \(P^s \). Set \(\tilde{\Phi} := F \circ (1 + \Psi_{aF}) \) and \(\tilde{G} := (1 + \Psi_{aF})^{-1} \circ G \). We get a new representation of \(R \):

\[\begin{array}{ccc}
P^r & \xrightarrow{\tilde{G}} & P^s \\
& \swarrow \searrow \nearrow & \\
& \equiv & F \\
& \swarrow \searrow & \\
P^s & \xrightarrow{\tilde{\Phi}} & P \\
& \nearrow \searrow & \\
& \equiv & \Phi_{aF} \\
& \swarrow \searrow & \\
& \equiv & P \\
\end{array} \]

We set \(G'' = G' \) and \(F'' = \Phi_{aF} \circ F' \):

\[\begin{array}{ccc}
P^r & \xrightarrow{G' = G''} & P^s \\
& \searrow \nearrow & \\
& \equiv & F'' \\
& \searrow \nearrow & \\
P & \xrightarrow{F''} & P \\
& \nearrow \searrow & \\
& \equiv & \Phi_{aF} \\
& \swarrow \searrow & \\
P & \xrightarrow{\Phi_{aF}} & P \\
\end{array} \]

Then \(F'' \circ G'' = 0 \). We have shown that the entries of \(\tilde{F} \) are congruent to those of \(F'' \) modulo \(a^{aF+1} \). The entries of \(\tilde{G} \) are congruent to those of \(G \) modulo \(a^{aG} \), which in turn are congruent to those of \(G'' = G' \) modulo \(a^{aG} \), so the entries of \(\tilde{G} \) are congruent to those of \(G'' \) modulo \(a^{aG} \).

So we have improved the situation by raising \(a_F \) by one. Now we want to use induction on \(a_F \); to do this we have to check whether all those constants may be taken to be the same in the next step of our induction:

The constants \(a \) and \(c_3 \) only depend on \(a \) and \(I \).

The constant \(c_1 \) was found by applying Proposition 2.1 to the homomorphism

\[\lambda: \Hom_P(P^s, P) \to \Hom_P(P^r, P) \]
\[\phi \mapsto \phi \circ G \pmod{I}. \]
In the next step of our induction we will apply it to

\[\lambda': \phi \mapsto \phi \circ (\text{Id} + \Psi_{af})^{-1} \circ G \mod I. \]

That is to say: Instead of at \(\lambda \) we will be looking at the composition of \(\lambda \) with the automorphism \((\text{Id} + \Psi_{af})^{-1})^*\) of \(\text{Hom}_P(P^s, P)\). Since the integer \(c_1 \) only depends on the image of \(\lambda \), it will be the same as before.

The last constant we have to consider is \(c_2 \). It was found by applying the Artin-Rees lemma to the submodule \(F^*(\text{Hom}(I, R)) \subset \text{Hom}_P(P^s, R) \cong R^s \). In the next step we will be considering the submodule \((1 + \Psi_{af})^*(F^*(\text{Hom}(I, R)))\) in \(\text{Hom}_P(P^s, R) \). But \((1 + \Psi_{af})^*\) is a \(P \)-module automorphism of \(\text{Hom}_P(P^s, R) \), so we can apply the following easy lemma:

Lemma 2.2. Let \(P \) be a ring, \(a \subset P \) an ideal, \(A \subset M \) two \(P \)-modules and \(\varphi \in \text{Aut}_P(M) \). If

\[(15) \quad A \cap a^{p+c}M = a^p(A \cap a^cM) \]

for some integers \(p, c \in \mathbb{N} \), then

\[(16) \quad \varphi(A) \cap a^{p+c}M = a^p(\varphi(A) \cap a^cM). \]

In particular, if \(P \) is noetherian and \(M \) finitely generated, the Artin-Rees lemma gives rise to the same constants when applied to the two submodules \(A \) and \(\varphi(A) \) of \(M \).

Proof. It is trivial to see that for any two submodules \(B_1, B_2 \) of \(M \) we have \(\varphi(B_1 \cap B_2) = \varphi(B_1) \cap \varphi(B_2) \) and also \(\varphi(a^pB_1) = a^p\varphi(B_1) \). So the left resp. right side of (15) gets mapped to the left resp. right side of (16). \(\square \)

Now let’s do the induction. \(\Phi_{af} \equiv \text{Id} \mod a^{a_{af} - a - c_2} \), so we have a limit \(\Phi = \cdots \circ \Phi_{af+1} \circ \Phi_{af} \), which is an automorphism of \(P \). In the same way we get a matrix \(\Psi \) with entries in some power of \(a \) such that \((1 + \Psi) = \prod (1 + \Psi_{af+k}) \). By construction, \(\Phi(f_i + \phi_i) \) is the \(i \)th component of \((f_1, \ldots, f_s) \circ (1 + \Psi) \), so \(\{f_i + \phi_i\} \) is being mapped to the generating system \(\{f_i \circ (1 + \Psi)\} \) of \(I \), hence \(\Phi(I') = I \). \(\square \)

3. Proof of Theorem 1.5. The proof is the same as for Theorem 1.1. We will only check that the condition \(a^d \text{Ext}^1(M, M) = 0 \) for modules is the analogue to the condition \(a^dT^1 = 0 \) we had before. We fix a presentation

\[P^r \xrightarrow{G} P^s \xrightarrow{F} P^t \rightarrow M \rightarrow 0 \]

of \(M \) and consider a perturbation

\[P^r \xrightarrow{G+\Gamma} P^s \xrightarrow{F+\Phi} P^t \]
which is an exact sequence. Then the $(t \times s)$-matrix Φ defines a homomorphism $\text{Im}(F) \cong P^s/(\text{Im}(G)) \xrightarrow{\Phi} (P^t/\text{Im}(F))/a^\infty$. We approximate this homomorphism by a homomorphism to $P^t/\text{Im}(F)$. Now the crucial point is to extend this homomorphism from $\text{Im}(F)$ to all of P^t. We begin with the exact sequence

$$0 \to \text{Im}(F) \to P^t \to M \to 0.$$

This gives us a long exact sequence which starts like this:

$$0 \to \text{Hom}(M, M) \to \text{Hom}(P^t, M) \to \text{Hom}(\text{Im}(F), M) \to \text{Ext}^1(M, M) \to \cdots.$$

So if $a^a \text{Ext}^1(M, M) = 0$, all homomorphisms in $a^a \text{Hom}(\text{Im}(F), M)$ can be extended to P^t. Finally we lift this extension from $\text{Hom}(P^t, M)$ to an automorphism $\Psi \in \text{Hom}(P^t, P^t)$. The automorphism $\text{Id}_{P^t} + \Psi$ is the analogue to the automorphism we have constructed above. The rest of the proof is exactly as for Theorem 1.1. It consists mainly of keeping track of the powers of a up to which things vanish. We leave the details to the reader.

JOHANNES-GUTENBERG UNIVERSITÄT, FB17 – MATHEMATIK, 55099 MAINZ, GERMANY

E-mail: konrad@mathematik.uni-mainz.de
E-mail: straten@mathematik.uni-mainz.de

REFERENCES

