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Abstract 

In this paper we show that conifold transitions between Calabi-Yau 3-folds can be used for 
the construction of mirror manifolds and for the computation of the instanton numbers of rational 
curves on complete intersection Calabi-Yau 3-folds in Grassmannians. Using a natural degener- 
ation of Grassmannians G(k, n) to some Gorenstein toric Fano varieties P(k ,  n) with conifolds 
singularities which was recently described by Sturmfels, we suggest an explicit mirror construction 
for Calabi-Yau complete intersections X C G(k, n) of arbitrary dimension. Our mirror construc- 
tion is consistent with the formula for the Lax operator conjectured by Eguchi, Hori and Xiong 
for gravitational quantum cohomology of Grassmannians. © 1998 Published by Elsevier Science 
B.V. 

1. Introduct ion  

One of  the simplest ways to connect moduli spaces of  two Calabi-Yau 3-folds X 

and Y is a so called conifold transition that attracted interest of  physicists several years 
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ago in connection with black hole condensation [33,25,13]. The idea of the conifold 

transition goes back to Miles Reid [31], who proposed to connect the moduli spaces 
of two Calabi-Yau 3-folds X and Y by choosing a point x0 on the moduli space of 

complex structures on X corresponding to a Calabi-Yau 3-fold Xo whose singularities 
consist of finitely many nodes. If Y is a small resolution of singularities on X0 which 
replaces the nodes by a union of p l ' s  with normal bundle 69( -  1 ) ® 69( -  1 ), one obtains 

another smooth Calabi-Yau 3-fold Y. Let p be the number of nodes on X0, and let cr 

be the number of relations between the homology classes of the p vanishing 3-cycles 
on X shrinking to nodes in Xo. Then the Hodge numbers of X and Y are related by the 

following equations [ 16]: 

hl.l(Y) = h13 (X) +re,  

h2'l (Y) = h2'l(X) - p  + a .  

The Hodge numbers of mirrors X* and Y* of X and Y must satisfy the equations 

and 

h~,l(X) = h2,1(X*), h l , l ( x  *) = h23(X) 

h j,1 (y)  = hZ,l(y*), h l , l (y  *) = h2,l(y). 

It is natural to expect that the moduli spaces of mirrors X* and Y* are again connected 
in the same simplest way, i.e. that X* can be obtained by a small resolution of some 
Calabi-Yau 3-fold I10" with p* nodes and or* relations, corresponding to a point y~ on the 

moduli space of complex structures on Y*. Hence, as suggested in [13,25,30] and [26], 

the conifold transition can be used to find mirrors of X, provided one knows mirrors Y* 

of Y. For this to work, one then needs 

p* = cr + or* = p ,  

i.e. X0 and Y0* have the same number of nodes and complementary number of relations 
between them. We remark that even for the simplest family of Calabi-Yau 3-folds, 
quintic hypersurfaces in p4, it is an open problem to determine all possible values of 

p [32]. 
One of the problems solved in this paper is an explicit geometric construction of 

mirrors X* for Calabi-Yau complete intersections 3-folds X in Grassmannians G(k, n) 
(this was only known for quartics in G(2, 4), as a particular example of complete inter- 

sections in projective space [29] ). Our method is based on connecting X via a conifold 
transition to complete intersections Y in a toric manifold. This manifold is a small 
crepant desingularization P(k, n) of a Gorenstein toric Fano variety P(k, n), which in 
turn is a flat degeneration of G(k, n) in its Plticker embedding, constructed by Sturm- 
fels (see Ref. [34], Ch. 1 1). Since one knows how to construct mirrors for Calabi-Yau 
complete intersections in P (k ,  n) [ 7,11 ], it remains to find an appropriate specialization 
of the toric mirrors Y* for Y to conifolds Y0* whose small resolutions provide mirrors 
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X* of X. The choice of the 1-parameter subfamily of Y0* among toric mirrors Y* is 
determined by the monomial-divisor mirror correspondence and the embedding 

Z ~ P i c ( P ( k , n ) )  ~ Pic(J3(k, n))  ~ Z l+(k-l)(n-k-l).  

We expect that this method of mirror constructions can be applied to all Calabi- 
Yau 3-folds whose moduli spaces are connected by conifolds transitions to the web of 
Calabi-Yau complete intersections in Gorenstein toric Fano varieties. This web has been 
studied in [ 1,2,12] as a generalization of the earlier results on Calabi-Yau complete 
intersection in products of projective spaces and in weighted projective spaces [ 14,15 ]. 

In order to obtain the instanton numbers of rational curves on Calabi-Yau complete 
intersections in Grassmannians, we compute a generalized hypergeometric series q~x (z ) ,  
describing the monodromy invariant period of X*, by specializing a (1 + (k - 1 ) ( n  - 

k - 1))-dimensional generalized (Gelfand-Kapranov-Zelevinski) GKZ-hypergeometric 
series for the main period of toric mirrors Y* to a single monomial parameter z. Since 
h 1'1 (X) = 1, the corresponding Picard-Fuchs differential system for periods of X* 
reduces to an ordinary differential equation 79~b = 0 of order 4 for ~x  (z ) .  The Picard- 
Fuchs differential operator P can be computed from the recurrent relation satisfied by 
the coefficients of the series q~x(z). Applying the same computational algorithm as 
in [7], one computes the instanton numbers of rational curves on all possible Calabi- 
Yau complete intersection 3-folds X C G(k ,n) .  The numbers of lines and conics on 
these Calabi-Yau 3-folds have been verified by Strcmme using classical methods and 
the Schubert package for MapleV. 

Another new ingredient of the present paper is the so-called trick with the factorials. 

This is a naive form of a Lefschetz hyperplane section theorem in quantum cohomology, 
which goes back to Givental's idea [ 20] about the relation between solutions of quantum 
D-module for Fano manifolds V and complete intersections X C V. The validity of this 
procedure has been established recently for all homogeneous spaces by Kim in [27]. 
If the trick with the factorials works for a Fano manifold V, one is able to compute 
the instanton numbers of rational curves on Calabi-Yau complete intersections X C V 
without knowing a mirror X* for X, provided one knows a special regular solution Av 
to the quantum D-module for V. In the case of Grassmannians we conjecture in 5.2.3 
that this special solution A~(k,n)(q) to the quantum D-module determined by the small 
quantum cohomology of G(k, n))  can be obtained from a natural specialization of the 
GKZ-hypergeometric series associated with the Gorenstein toric degeneration P (k, n) of 
G(k, n). Conjecture 5.2.3 has been checked by direct computation for all Grassmannians 
containing Calabi-Yau 3-folds X as complete intersections. In fact, there is no essential 
difficulty in checking the conjecture in each particular case at hand, because such 
a check involves only calculations in the small quantum cohomology ring of G(k, n), 
whose structure is well known [9]. This last result implies that the instanton numbers for 
rational curves on 3-dimensional Calabi-Yau complete intersections in Grassmannians 
are correct in all computed cases. 

We remark that our conjecture 5.2.3 on the coincidence of A6(k,n) (q) with the special- 
ization of the multidimensional generalized GKZ-hypergeometric series corresponding 
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to the Gorenstein toric Fano variety P(k, n) strongly supports the idea that Gromov- 
Witten invariants of G(k, n) and complete intersections X C G(k, n) behave well under 

fiat deformation and conifold transitions. 
Using the degeneration of G(k,n) to P(k,n), we propose in arbitrary dimension 

an explicit construction for mirrors of Calabi-Yau complete intersections X C G(k, n) 
whose monodromy invariant period coincide with the power series ~x(z) obtained 
by applying the trick with the factorials to A6~k,n)(q). We observe that our mirror 

construction is consistent with the formula for the Lax operator of Grassmannians 
conjectured by Eguchi, Hori and Xiong in [17]. 

Many results formulated in this paper have been generalized and proved in [8] for 
toric degenerations of partial flag manifolds which have been introduced and investigated 
by Gonciulea and Lakshmibai in [22-24]. These results are most easily interpreted in 
terms of certain diagrams associated to a partial flag manifold, generalizing the one used 

in [20] for the case of the complete flag manifold. 

2. Simplest examples 

2.1. Quartics in G(2 ,4)  

First we illustrate our method by analyzing a simple case, for which the mirror 
construction is already known: the case of quartics in G(2,4) ,  the Grassmannian of 
2-planes in C 4 [7,29]. The Plficker embedding realizes the Grassmannian G(2, 4) as a 
non-singular quadric in pS, defined by the homogeneous equation 

ZI2Z34 - -  ZI3Z24 -[- ZI4Z23 = 0 ,  

where zij (1 ~< i < j <~ 4) are homogeneous coordinates on pS. Let P ( 2 , 4 )  C p5 be 
the 4-dimensional Gorenstein toric Fano variety defined by the quadratic equation 

ZI3Z24 = ZI4Z23.  

Denote by X the intersection of G(2, 4) with a generic hypersurface H of degree 4 in p5, 
so that X is a non-singular Calabi-Yau hypersurface in G(2, 4). Its topological invariants 
are hl ' l (X)  = 1, h 2'1 (X) = 89, and x(X) = -176.  Denote by X0 the intersection of 
P ( 2 , 4 )  with a generic hypersurface H of degree 4 in pS. Then X0 is a Calabi-Yau 
3-fold with 4 nodes which are the intersection points of H with the line 1 C P (2 ,4 )  
of conifold singularities. Considering X0 as a deformation of X, it follows from general 
formulas proved in Theorem 6.1.1 that the homology classes of the vanishing 3-cycles 
on X shrinking to 4 nodes in Xo satisfy a single relation. Denote by Y a simultaneous 
small resolution of all 4 nodes. One obtains this resolution by restriction of a small toric 
resolution of singularities in P ( 2 , 4 ) :  p : f f (2 ,4)  ---, P (2 ,4 ) .  The smooth toric variety 
,~(2, 4) is a toric p3-bundle over pl: 

/~(2,4) = P p , ( 0 0 0  ® 0 ( 1 )  ® 0 ( l ) )  
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and the morphism p contracts a 1-parameter family of  sections of  this p3-bundle with 

the normal bundle (9 @ O ( - 1 )  • O ( - 1 ) .  A smooth Calabi-Yau hypersurface Y C 
P ( 2 , 4 )  has a natural K3-fibration over pl  and the following topological invariants: 
x ( Y )  = - 1 6 8 ,  h l ' l (Y)  = 2, and h2'l (Y) = 86. 

The Gorenstein toric Fano variety P ( 2 ,  4) can be described by a 4-dimensional fan 
.~(2, 4)  C ]I~ 4 consisting of  cones over the faces of a 4-dimensional reflexive polyhedron 

d (2 ,  4) with 6 vertices: 

UI,O := f l , l ,  U2,0 = f2,1 -- fl,1, U2,1 := f2,2 -- fl,2, 

v2,2 := --f2,2, U2,1 := f2,2 -- f2,1, Vl,I = fl,2 -- fl,1, 

where {fl,1, fl,2, f2,), f2,2} is a basis of  the lattice Z 4 C IR 4. 
The regular fan £ ( 2 , 4 )  defining the smooth projective toric variety P ( 2 , 4 )  is ob- 

tained by a subdivision of 2 ( 2 ,  4) .  The combinatorial structure of  ~ (2 ,  4) is defined 

by the following primitive collections (see notations in [ 3 ] ): 

= {Ul,0, UI,I, U2,1, U2,2}, Cl,l = {/32,1, U2,0}. 

The fan 2 ( 2 ,  4) contains 8 cones of  dimension 4, obtained by deleting one vector from 

each primitive collection. The primitive relations corresponding to 74.o and Cl3 are 

Ul,0 -~- Ol,l -}- U2,1 + 02,2 = 0 

and 

u2,1 -~- u2,0 -- Ul,l -}- u2,1. 

Let Pa(2,4) be the Gorenstein toric Fano variety associated with the reflexive poly- 

hedron A(2 ,4 ) .  By the toric method of [4],  the mirror Y* of Y can be obtained as a 

crepant desingularization of the closure in Pa(2,4) of  an affine hypersurface Z f  with the 

equation 

f ( X )  = - 1  + alX1 q- a2X2 --k a3X3 + a4X4 q- as(X1X2X3) -1 + a6 (X41XIX2) ,  

where al . . . . .  a6 are some complex numbers (the Newton polyhedron of f is isomorphic 

to /1 (2 ,4 ) ) .  We choose a subfamily of  Laurent polynomials fo  with coefficients {ai} 

satisfying an additional monomial  equation 

a! a2 = a4a6. 

The affine Calabi-Yau hypersurfaces Zfo of this subfamily are not /1(2 ,  4)-regular any- 
more, because the closures Zf0 in Pa(2,4) have a singular intersection with the stratum 

To C P/t(2,4) corresponding to the face 

O = Conv{ (1 ,O ,O ,O) ,  (0, 1 , 0 , 0 ) ,  ( 0 , 0 , 0 ,  1), (1, 1 , 0 , - 1 ) } .  

Without loss of  generality, we can assume that al = a2 = a3 = a4 = 1 (this condition can 
be satisfied using the action of  (C*)  4 on X1 . . . . .  X4). Thus we obtain a 2-parameter 

family of  Laurent polynomials defining Zf:  



q~x( z ) = , ,  - -  

m>~O 

Using the identity 
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f (X )  = - 1  + XI + X2 -I- X3 n t- X4 + a5 (XIX2X3)  -1 Jr- a 6 ( X 4 1 X 1 X 2 ) ,  

and a l-parameter subfamily of Laurent polynomials 

f o (  X )  = -- l  -IF X 1 -1- X2 Jr X3 -1- X4 q- a5( XIX2X3)  -1 -1- ( X 4 1 X I X 2 )  

defining Zti,. The monodromy invariant period ~ of the toric hypersurface Zf can be 
computed by the residue theorem: 

f dX4 1 1 dX~ A A -  
@x(as,a6)- (2rri) 4 (--f~ X~- "'" X4 

y 

By this method, we obtain the generalized hypergeometric series corresponding to f (X) :  

(4k + 4l) ! k+t t 
@s(a5,a6) = Z (k!)2(l!)2((k +l)!)2 a5 a6" 

k,t>>.O 

By the substitution a6 = 1 (ala2 = a4a6) and a5 = z, we obtain the series corresponding 
to the l-parameter family of Laurent polynomials fo: 

(m!)2 k ,(k!)2(l!)2 " 

(m')2 - ( 2 2 )  ' 

we transform Cbx(z) to the form 

(4m) !(2m) !zm" 
Cl)x(Z) = Z (m!)6 

m)0 

This is a well-known series, satisfying a Picard-Fuchs differential equation 

0 
( D  4 --  16z(2D + 1)2(4D + 1)(4D+3))Cbx(z) =0,  D=Z~z,  

predicting the instanton numbers of rational curves on X (cf. Ref. [29] ). The correctness 
of these numbers now follows from the work of Givental [ 19]. 

2.2. Complete intersections of type ( 1, l, 3) in G(2, 5) 

Let zi.i (1 ~< i < j ~ 5) be homogeneous coordinates on the projective space p9. 
The Grassmannian G(2,5) of 2-planes in C 5 can be identified with the subvariety in 
p9 defined by the quadratic equations 
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Z23Z45 --  Z24Z35 -[- Z25Z34 = 0 ,  

ZI3Z45 --  Z14Z35 -}- ZI5Z34 = 0 ,  

ZI2Z45 --  Z14Z35 -~- ZI5Z34 = 0 ,  

ZI2Z35 --  Z13Z25 -[- ZI5Z23 = 0 ,  

Z12Z34 - -  ZI3Z24 + ZI4Z23 = 0.  

We associate with G(2, 5) a 6-dimensional Gorenstein toric Fano variety P(2,  5) C p9 
defined by the equations 

Z24Z35 = Z25Z34, Z14Z35 = ZI5Z34, ZI4Z35 = Z15Z34, 

ZI3Z25 = ZI5Z23, ZI3Z24 = ZI4Z23. 

The following statement is due to Sturmfels (see Ref. [34], Example 11.9 and Propo- 
sition 11.10): 

Proposition 2.2.1. The Gorenstein toric Fano variety P(2 ,5)  is a degeneration of the 
Grassmannian G(2, 5), i.e. P(2 ,5)  is the special fibre of a flat family whose generic 
fibre is G(2, 5). 

The toric variety P(2,  5) can be described by a fan ~(2,  5) c R 6 consisting of cones 
over the faces of a 6-dimensional reflexive polyhedron A(2, 5) with 9 vertices 

u~,o := fl,~, U2,i := f2 , i+ l  --  fl,i+l, i = 0, 1,2, 

/)2,3 "= - - f 2 , 3 ,  Oi,j := f i , j+ l  --  f i , j ,  i= 1,2, j = 1,2, 

where {fl , l ,  fl,2, fl,3, f2,1, f2,2, f2,3) is a basis of the lattice ~ 6  C ]~6. 

There exists a subdivision of the fan X(2, 5) into a regular fan ~,(2, 5) defined by 
the primitive collections: 

= (HI ,0 ,  UI,1, UI,2,/12,2, U2,3}, 

c~,~ = {u2,0, v2,1 }, ct,2 = {u2,~, v2,2}, 

i.e. ~,(2, 5) contains exactly 20 cones of dimension 6 generated by the 6-element sets 
obtained by taking all but one of the vectors from each primitive collection. The primitive 
relations corresponding to "R., C1,1 and C~,2 are 

uj ,o  + vl , l  + vj,2 + u2,2 + v2,3 = 0 ,  

/12,0 ~- v2,1 = Ul,l q- u2,1, /12,1 ~- u2,2 -- Vl,2 ~-/12,1. 

Denote by if(2, 5) the smooth toric variety associated with the fan ~(2, 5). It is easy 
to check that P(2,  5) is a Gorenstein toric Fano variety and/3(2,5)  is a small crepant 
resolution of singularities of P(2,  5). The toric manifold/3(2, 5) has non-negative first 
Chern class and it can be identified with a toric bundle over P~ with the 5-dimensional 
fiber 
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F := P w ( O  @ O ® O @ O(1)  @ O ( 1 ) ) .  

There is another description of P ( 2 , 5 ) .  We remark that variables z12 and z,45 do 
not appear in the equations for P ( 2 , 5 ) .  Thus P ( 2 , 5 )  is a cone over a Gorenstein 
4-dimensional toric Fano variety 

P ' ( 2 , 5 )  := P ( 2 , 5 )  n {z12 = z45 = 0 }  C p7. 

We can describe U ( 2 ,  5) by a 4-dimensional fan U ( 2 ,  5) consisting of cones over a 
4-dimensional reflexive polyhedron A~(2, 5) with 7 vertices 

e l = ( 1 , 0 , 0 , 0 ) ,  e 2 = ( 0 , 1 , 0 , 0 ) ,  e 3 = ( - 1 , - 1 , 0 , 0 ) ,  

e 4 = ( 0 , 0 , 1 , 0 ) ,  e s = ( 0 , 0 , 0 , 1 ) ,  e 6 = ( 0 , 0 , - l , - l ) ,  

e T = ( 1 , 1 , 1 , 1 ) .  

The only singularities of U ( 2 , 5 )  are nodes along two lines 11,12 E P ' ( 2 , 5 )  C p7 

corresponding to the 3-dimensional cones 

0"1 = ]~>o(e l ,  e2, e6, eT} and 0"2 = R~>0(e4, es, e3, e7) 

in U ( 2 , 5 ) .  Subdividing each of these cones into the union of 2 simplicial ones, we 

obtain a small crepant resolution P~(2, 5) of singularities of Pt(2,  5). The smooth toric 
4-fold P"'/(2, 5) can be identified with the blow up of a point on p2 x p2. 

Let X - X~,l.3 C G(2,  5) be a smooth 3-dimensional Calabi-Yau complete intersection 
of 3 hypersurfaces of degrees 1, 1 and 3 in p9 with G(2, 5). One can compute h 1'1 (X) = 
1, h2'l(X) = 76, and x ( X )  = -150.  Now let X0 be the intersection of P ' ( 2 , 5 )  with 

a generic hypersurface H C p7 of degree 3. Then X0 is a deformation of X, having 6 
nodes obtained from the intersections HNll and HAl2. The 3 nodes on each intersection 

H N li (i = 1,2) are described by 3 vanishing 3-cycles on X, satisfying a single linear 

relation. Resolving singularities of X0, we obtain another smooth Calabi-Yau 3-fold Y 
with 

h t ' l(Y) = h  1 ' 1 ( X ) + 2 = 3 ,  h 24(Y) = h  2 ' 1 ( X ) + 2 - 6 = 7 2 .  

The mirror Y* of the Calabi-Yau 3-fold Y can be obtained by the toric construc- 
tion [4]. The Calabi-Yau 3-fold Y* is a toric desingularization ~zf of a A ' (2 ,5 ) -  
compactification of a generic hypersurface Zf in (C*)4 defined by a Laurent polynomial 

f ( X )  with the Newton polyhedron A~(2, 5): 

f ( X ) = -1  + al X1 -Jr- a2 X2 Jr- a3 ( X I X2 ) -1 Jr- a4X3 q- a5 X4 

+a6(  X3X4)  -1 q- aTX1X2XBX4. 

As shown in [4], one has h 1'1 (Zf )  = h 23 (Y) = 72 and h 2'1 ( d f )  = h l'l (Y) = 3. 

We identify the mirror X* of X with a desingularization Zy o of a A~(2, 5) compacti- 
fication Zfo of a generic hypersurface Zfo in (C*) 4 defined by Laurent polynomials fo 
whose coefficients {ai}  satisfy two additional monomial equations 

aid2 = a6a7 and a4a5 = a3aT. 



648 V. V. Batyrev et al./Nuclear Physics B 514 [PM] (1998) 640-666 

Without loss of  generality, we can put al = a2 = a4 = a7. So one obtains 

f ( X )  = - 1  + X1 + X2 + a3(X1X2) - l  + X3 + asX4 + a6(X3X4) -1 ÷ X I X 2 X 3 X 4  

and 

f o ( X )  = -1  + X1 + X2 + a3(XIX2) -1 ÷ X3 ÷ a3X4 ÷ (X3X4) -1 ÷ X1X2X3X4. 

It is easy to see that the Laurent polynomial f0 is not A ' (2 ,5) - regula r  (this regu- 
larity fails exactly for two 2-dimensional faces O1 := Conv(e l , e2 ,e6 ,  e7) and 02 := 

Conv(ea,  e5,e3, eT) of  A ' ( 2 , 5 )  (see the definition of A-regularity in [4 ] ) .  The 4- 

dimensional Gorenstein toric Fano variety P,a,(2,5) associated with the reflexive polyhe- 
dron A'(2,  5)-closure has singularities of  type A2 along of the 2-dimensional strata To~ 

and To2. The projective hypersurfaces Zfo C Pa,(2,5) defined by the equation fo = 0 
have non-transversal intersections with To, and To2 (each intersection is a union of 
two rational curves with a single normal crossing point).  After toric resolution of A2- 

singularities along To, on PA'~2,5), we obtain 3 new 2-dimensional strata over each To,. 

This shows that we cannot resolve all singularities of  ZAf 0 by a toric resolution of singu- 

larities on the ambient toric variety P,~,(2,5). Let Y0* := Zfo be the pullback of Zfo under 

a MPCP-desingularization 
A 

p : PA'(2,5) --+ P,~'(2,5). 

Then Y0* is a Calabi-Yau 3-fold with 3 + 3 = 6 nodes obtained as singular points of  
A A 

intersections of  Y0* with the 6 strata of  dimension 2 in PA'(2,5) over To~, To2 C P,~'(2,5). 
One can show that the vanishing 3-cycles associated with the 3 nodes over each To, 

(i = 1,2)  satisfy 2 linear relations (see Theorem 6.1.1 ). If  X* denotes a small resolution 

of these 6 nodes on Yo*, then 

h 1'1 (X*) = h 1'1 (Zf) ÷ 4 = 76 

and 

h 2 ' l  ( X  * )  = h 2 ' l  ( Z f )  - t - 4  - 6 = 1. 

Thus the Hodge numbers of  X* and X satisfy the mirror duality. 
Finally, we explain the computation of the instanton numbers of  rational curves of  

degree m in the case of  Calabi-Yau complete intersections X of  type ( 1, 1,3) in G(2 ,  5) .  
As shown in [7] ,  one obtains the following monodromy invariant period for ZT: 

(3k + 31 + 3n) ! ak+lanan+l 
@(a3,as,a6) = ~ ( k ! ) 2 ( n ! ) 2 l ! ( k + l ) ! ( l + n ) !  3 5 6 " 

k,l,n>/O 

By the substitution a3 = a5 = z and a6 = 1, we obtain the monodromy invariant period 

for Zfo: 

~ x ( z )  = (k!)2(n!)Zl!(k  + l ) ! ( l  + n)! 
k m 
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It remains to apply to the series @ x ( z )  the general algorithm from Ref. [7] (see 

Sections 6.2 and 7.1 for details, and the instanton numbers). 

3. Toric degenerations of Grassmannians 

In this section we review without proof some results, which we prove for arbitrary 

partial flag manifolds in [8] .  

3.1. The toric variety P ( k ,  n) and its singular locus 

Let G ( k , n )  be the Grassmannian of  k-dimensional C-vector subspaces in a n- 

dimensional complex vector space (k < n). Denote by 

Xi,j i= l . . . . .  k, j =  l . . . . .  n -  k 

k (n  - k) independent variables. We denote by T(k ,  n) the algebraic torus 

Spec C[ Xi,), Xi~.] 1 ] ~-- ( C * )  k (n - k )  

of dimension k (n  - k) .  We put N ( k , n )  := Z k("-k) to be a free abelian group of  rank 

k (n  - k) with a fixed Z-basis fi,j (i = 1 . . . . .  k, j = 1 . . . . .  n - k).  Define the set of  

2 ( k -  l ) ( n -  k -  1) + n elements in N ( k , n )  as follows: 

ul,0 := f l , l ,  ui,j := fi,j+l - f i - l , j+l ,  

vk,,,-k := --fk,n-k, oij := f i j+l -- fi,i, 

We set N ( k , n ) ~  = N ( k , n )  ® •. 

i = 2  . . . . .  k , j = 0  . . . . .  n - k - l ,  

i = l  . . . . .  k, j =  1 . . . . .  n - k - l .  

Definition 3.1.1. Define a convex polyhedron A(k,  n) C N ( k ,  n)~ as the convex hull of 

all lattice points {Ui , j ,Ui , , j ,  } .  We set 2: (k ,n)  c N ( k ,  n)~ to be the fan over all proper 
faces of  the polyhedron A(k,  n).  

Definition 3.1.2. Define P ( k ,  n) to be the toric variety associated with the fan 2:(k, n). 

Theorem 3.1.3. The polyhedron A(k,  n) is reflexive. In particular, P ( k ,  n) is a Goren- 

stein toric Fano variety. 

Definition 3.1.4. Let ~ (k ,  n) be a complete regular fan whose 1-dimensional cones are 

generated by the lattice v e c t o r s  {u i , j ,  Ul,m} and whose combinatorics is defined by the 
following 1 + (k - 1 ) (n  - k - 1) primitive collections: 

"T~0 :=  {b/l,0, UI,1, UI,2 . . . . .  U l , n - k - 1 ,  R 2 , n - k - I  , U 3 , n - k - I  , • • • , Uk,n--k-I  , Uk,n-k } , 

Ci,.j = {btk+l-i,j--l,Uk+l-i,j, i= 1 . . . . .  k -  1, j =  1 . . . . .  n - k -  1}. 

In particular, the fan ~ (k ,  n) consists of  n2 Ck-l)¢n-k-1) cones of  dimension k(n  - k) .  
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Remark 3.1.5. We notice that the lattice vectors Ui,j and Vt,m satisfy the following 1 + 
(k - 1) (n - k - 1 ) independent primitive relations: 

U l , 0  "4- U I , I  "4- • • • - ~  Ul,n--k--I -4- U2,n--k-1 ~- . . .  "q- Uk ,n -k - I  -]- Vk,n- k = O, 

Uk+l_ i , j_  1 -]-Uk+l_i, j ----Uk+l_i, j -~Uk_i , j ,  i= 1 . . . . .  k -  1, j =  1 . . . . .  n - k -  1. 

According to Theorem 4.3 in [3] ,  the toric variety ~,(k, n) can be obtained as a ( k -  
1) ( n -  k -  1)-t imes iterated toric bundle over Pl 's :  we start with pn-1 and construct 

on each step a toric bundle over p1 whose fiber is the toric variety constructed in the 
previous step. At each stage of this process, we obtain a smooth projective toric variety 

with the non-negative first Chern class which is divisible by n. In particular we obtain 

that the smooth projective toric variety P ( k ,  n) defined by the fan 27(k, n) has Picard 

number 1 + ( k -  1 ) (n  - k - 1). Moreover, the first Chern class c'1 (k, n) of  f i (k ,  n) is 

non-negative and it is divisible by n in P ic ( f f (k ,  n ) ) .  

Definition 3.1.6. We denote by f f ( k , n )  (1 <~ i <<. k -  l, 1 <~ j <<. n - k -  1) ( k -  1 ) ( n -  

k - 1 ) codimension-2 subvarieties of  f i (k ,  n) corresponding to the 2-dimensional cones 

O'i i E ~, (k ,n ) :  

O'ij = ]~>/O(Uk+l- i , j - l  , Uk+l--i,j). 

Theorem 3.1.7. The small contraction p : fi( k, n) --* P( k, n) defined by the semi-ample 

anticanonical divisor o n / 3 ( k ,  n) contracts smooth toric varieties Wi,j to codimension-3 

toric subvarieties Wi,j C P(k ,  n) whose open strata consist of  conifold singularities, i.e. 

singularities whose 3-dimensional cross sections are isolated non-degenerate quadratic 

singularities (nodes, ordinary double points).  

The proof  of  a generalized version of  Theorem 3.1.7 for arbitrary partial flag manifolds 

is contained in [8] (Th. 3.1.4). 

3.2. The flat degeneration of G(k, n) to P(k ,  n) 

Definition 3.2.1. Denote by A(k, n) the set of all sequences of  integers 

a = ( a l , a 2  . . . . .  ak) E Z k 

satisfying the condition 

1 ~<al < a 2  < . . . < a k ~ < n .  

We consider A(k,  n) as a partially ordered set with the following natural partial order: 

a (a l ,  at`) -.< a I . . . . .  = (a  I . . . . .  a~) 

if and only if ai <~ a~ for all i = 1 . . . . .  k. We set 

rain (a ,  a ' )  := (min (a l ,  a~l ) . . . . .  min (at,, a~) ) 
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and 

/ 
max (a, a ')  := (max (al ,  a l ) ,  . . .  , max (ak, ak)).' 

Theorem 3.2.2. There exists a natural one-to-one correspondence between faces of co- 

dimension I of the polyhedron A(k, n) and elements of A(k, n). 

Proof See Ref. [8] (Th. 2.2.3). 

Theorem 3.2.3. The first Chern class of the Gorenstein toric Fano variety P(k ,n)  is 
equal to n[H], where [HI is the class of the ample generator of Pic(P(k,n))  % Z. 
Moreover, there exists a natural one-to-one correspondence between the elements of the 

monomials basis of 

H°( P( k,n) ,  O( H) ) 

and elements of A(k, n). In particular, 

Proof See Ref. [8] (Prop. 3.2.5). 

Theorem 3.2.4. The ample line bundle O(H) on P(k ,n)  defines a projective embed- 
ding into the projective space p(~)- l  whose homogeneous coordinates z~ are naturally 
indexed by elements a E A(k, n). Moreover, the image of P(k, n) in P(~)-l  is defined 

by the quadratic homogeneous binomial equations 

• ~aZa' -- Zmin(a,a') Zmax(a,a') 

for all pairs (a, a t) of non-comparable elements a, a t E A(k, n). 

Proof See Ref. [8] (Th. 3.2.13). 

Example 3.2.5. The following (4) quadratic equations in homogeneous coordinates {zi4 } 

(1 ~< i < j ~< n) are defining equations for the toric variety P(2 ,  n) in P(~)-I:  

~,il ,in Zi2,i3 --  Zil ,i 3 Zi2,i4 = 0 ( 1 <~ il < i2 < i3 < i4 <~ n ) .  

The following theorem is due to Sturmfels (see Ref. [34], Prop. 11.10.) 

Theorem 3.2.6. There exists a natural fiat deformation of the Plticker-embedded Grass- 
mannian 

G(k,n)  C p(~)- i  
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whose special fiber is isomorphic to the subvariety defined quadratic homogeneous 
binomial equations 

Za Za' -- Znfin ( a,a' ) Zmax(a,a') 

for all pairs (a,  a ' )  of  non-comparable elements a, a' c A(k,  n). 

Corollary 3.2.7. The toric variety P(k ,  n) C p (~ ) - l  is isomorphic to a flat degeneration 
of  the Pliicker embedding of  the Grassmannian G(k,  n). 

4. Equations for mirror manifolds 

4.1. The mirror construction 

Recall the definition of  nef-partions for Gorenstein toric Fano varieties and the mirror 

construction for Calabi-Yau complete intersections associated with nef-partitions [ 11 ] 

(we will follow the notations in [6] ). 

Definition 4.1.1. Let d C MR be a reflexive polyhedron, /t* C N~ its dual, and 

{el . . . . .  el} the set of  vertices of  A* corresponding to torus invariant divisors D1 . . . . .  Dt 

on the Gorenstein toric Fano variety Pa. We set I := {1 . . . . .  l}. A partition I = 

Jl t3 . . .  U Jr of  I into a disjoint union of  subsets Ji c I is called a nef-partition, if 

~-'~ D.i 
.iE J, 

is a semi-ample Cartier divisor on P~ for all i = 1 . . . . .  r. 

Definition 4.1.2. Let I = J l  U . . .  U Jr be a nef-partition. We define the polyhedron 

Vi (i = I . . . . .  r) as the convex hull of  0 ~ d and all vertices ej with j c J/. By 

di  C MR (i = ! . . . . .  r) we denote the supporting polyhedron for global sections of  the 

corresponding semi-ample invertible sheaf O(~-~j~sl O j )  o n  PA. For each i = 1 . . . . .  r, 

we denote by gi ( h i )  a generic Laurent polynomial with the Newton polyhedron A i 

( V i ) .  

The mirror construction in [ 11 ] says that the mirror of  a compactified generic Calabi- 

Yau complete intersection gl . . . . .  gr = 0 is a compactified generic Calabi-Yau 

complete intersection defined by the equations hi = . . .  = hr = O. 
Now we specialize the above mirror construction for the case A = A*(k,n) ,  A* = 

A(k, n), and Pa = P(k ,  n), where A(k, n) is a reflexive polyhedron defned in Defini- 

tion 3.1.1, A* (k, n) its polar-dual reflexive polyhedron and P (k, n) the Gorenstein toric 
Fano degeneration of  the Grassmannian G(k, n). 

Definition 4.1.3. Define the n subsets El . . . . .  En of  the set of  vertices {ui,j, ui,,j, } of 
the polyhedron A(k, n) : 
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E1 ;={Ul,0}, Ei={ui.o,ui,1 . . . . .  ui,n-k-l}, i = 2  . . . . .  k, 

e k + j  :=  v2,j . . . . .   kj}, j = 1 . . . . .  n - k - l ,  E .  := 

653 

Proposition 4.1.4. Let D(Ei)  C P ( k , n )  (i = 1 . . . . .  n) be the torus invariant divisor 

whose irreducible components have multiplicity 1 and correspond to vertices of A(k, n) 
from the subset E i. Then the class of  D(Ei)  is an ample generator of Pic(P(k,  n) ). 

Proof By a direct computation, one obtains that for all i, j E { 1 . . . . .  n} the difference 

D(Ei)  - D ( E j )  is a principal divisor, i.e. all divisors D(E1) . . . . .  D(En) are linearly 

equivalent. On the other hand, 

D(E1) + . . .  + D(En) 

is the ample anticanonical divisor on P ( k , n ) .  By Theorem 3.2.3, the anticanonical 

divisor on P ( k , n )  is linearly equivalent to nil, where H is an ample generator of  

Pic(P(k ,  n) ) .  Hence, each divisor D(Ei)  is linearly equivalent to H. [] 

Definition 4.1.5. Let 1 <<. dj <<.... <~ dr be positive integers satisfying the equation 

dl + . . . + d r = n  

and I := {1 . . . . .  n}. We denote by X := Xdi,...,dr C G(k ,n)  a Calabi-Yau complete 

intersection of hypersurfaces of  degrees dl . . . . .  dr with G(k, n) C p Q ) - l .  Consider a 

partition I = J l  I._l . . .  [._J Jr of I into a disjoint union of subsets Ji C I with IJil = di. 

Definition 4.1.6. Let ~Tj~ (i = 1 . . . . .  r)  be the convex hull of  0 C N(k ,n )~  and all 
vertices of  A(k, n) contained in the union 

[..J EJ. 
.j C Ji 

We denote by hj , (X)  a generic Laurent polynomial in variables Xi,,j, := X L',/ (1 

i t ~< k, 1 <~ f ~< n - k) having V j, as a Newton polyhedron. 

By Proposition 4.1.4, one immediately obtains the following: 

Corollary 4.1.7. Let Y : =  Ydt,...,dr C P ( k , n )  a Calabi-Yau complete intersection of 
hypersurfaces of  degrees dl . . . . .  d~ with the Gorenstein toric Fano variety P(k,  n) C 
p ( ~ ) - l .  Then the mirror Y* of Y (according to Refs. [7,11])  is a compactified generic 
Calabi-Yau complete intersection defined by the equations 

h j, (X)  . . . . .  hj~(X) = O. 

Definition 4.1.8. Define n Laurent polynomials in k × (n - k) variables Xi4 := X y''~ as 
follows: 
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Pl ( X) = al,oX u',°, 

k 

Pc+.~ ( X) = Z bi'jX'"J' 
i=1 

n - k - I  

p i ( X )  = Z ai'jXUij' 

j=0 

i = 2  . . . . .  k, 

. b X ~'k''-k j = l  . . . .  n - k - l ,  p n ( X ) =  k,~-k , 

where ai,.i and bt,m are generically chosen complex numbers. In particular, the Newton 

polyhedron of  pi(X)  is the convex hull of  El. 

Conjecture 4.1.9. Let I = { 1 . . . . .  n} = Jl U . . .UJ r  be a partition of I into a disjoint union 

of subsets Ji C I with IJ;I = di as in (4.1.5) and Y0* be a Calabi-Yau compactification 

of a general complete intersection in (C*)  k("-k) defined by the equations 

1 - ~ ' p j ( X )  = 0  ( i =  1 . . . . .  n ) ,  
./EJi 

where the coefficients ai,j and bt,m satisfy the following (k - 1 ) ( n -  k - 1) conditions 

a k + l - i j - l b k + l - i , j  = ak+l - i , jbk- i , j .  

Then a minimal desingularization X* of Y0* is a mirror of  a generic Calabi-Yau complete 

intersection X :=  Xdl,...,d r C G(k, n). 

Example 4.1.10. If  X := Xl,l,3 C G(2,  5),  we take Ji = {1}, J2 = {5} and J3 = {2, 3,4}.  
Then the mirror construction for X proposed by Conjecture 4.1.9 coincides with the one 

considered in Section 2.2. 

4.2. Lax operators of  Grassmannians 

In Ref. [ 17] Eguchi, Hori, and Xiong have computed the Lax operator L for var- 

ious Fano manifolds V: projective spaces, Del Pezzo surfaces and Grassmannians. In 
particular for V = pn the corresponding Lax operator L is given by the formula 

L = Xl + X2 + . . .  + Xn + qX-: 1 X21 . . .  X n  1, 

where logq  is an element of  H2(Pn) .  On the other hand, if Z is an affine hypersur- 
face defined by the equation L(X1 . . . . .  Xn) = 1 in the algebraic torus T ~ (C*)  n = 
S p e c C [ X ~  1 . . . . .  X~ 1 ], then, according to [4] ,  a suitable compactification of Z is a 
Calabi-Yau variety which is mirror dual to Calabi-Yau hypersurfaces of  degree n + 1 
in W. 

Remark 4.2.1. It is natural to suggest that the last observation can be used as a guiding 
principle for the construction of  mirror manifolds of  Calabi-Yau hypersurfaces X in 
Fano manifolds V. 
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Let V be a Fano manifold of  dimension n. Denote by P ( [ V] ) the class of  unity (the 

class of  the normalized by unity volume form on V) in the cohomology ring H*(V) .  

Let 

dXI dXn 

,,,= A . . . A  x-7 

be the invariant differential n-form on the n-dimensional algebraic torus T ~ ( C * ) ' .  

According to Ref. [ 17], the Lax operator L(X)  of the Fano manifold V is a Laurent 

polynomial in Xl . . . . .  X, with coefficients in the group algebra Q[ / /2  (v, Z ) ]  satisfying 

for all m ~> 0 the equation 

1 f Lm+l ( c r m ( [ V ] ) P ) ) -  m +  1 (X)o~, 
J 

Y 

where O'm([V])  is the m-gravitational descendent of  [V] on the moduli spaces of 

stable maps of curves of  genus g = 0 to V, (Crm([V])P)) is the corresponding two 
point correlator function, and y is the standard generator of H,(T, Z) .  

For the case V = G(r, s) (n = r(s - r)) the following was conjectured in [17]:  

Conjecture 4.2.2. The Lax operator of  the Grassmannian G(r, s) has the following form 

L (X)  = XII,I l -{- Z -1 X[a,b] (Xla+l,b] + X[a,b+l]) + qX~ I,-rr]', 
I<~,<~s--r 

I~b~r 

where logq  E H2(G(r , s ) )  and Xa,b = 0 if a > s - r or b > r. 

Proposition 4.2.3. Let P (r,  s) be the toric degeneration of the Grassmannian G ( r, s) .  

Then the equation L(X)  = 1 defines a 1-parameter subfamily in the family of  toric 
mirrors of  Calabi-Yau hypersurfaces in P(r,  s) (see Ref. [4 ] ) .  

Proof According to Ref. [4] ,  we have to identify the Newton polyhedron of the Laurent 
polynomial L (X)  in Conjecture 4.2.2 with the reflexive polyhedron A(r, s). The latter 

follows immediately from the explicit description of A(r, s) in 3.1.1 and from the 1-to- l 

correspondence f i,j ~ XIj, i] . [] 

Proposition 4.2.4. The equations for the mirrors to Calabi-Yau hypersurfaces conjec- 
tured in Conjecture 4.1.9 in G(r, s) coincide with the equations L(X)  = 1 where L(X)  
is the Lax operator conjectured for G(r, s) in [ 17], 

Proof It is easy to see that the coefficients of  the polynomial L(X)  satisfy all r(s - r) 
monomial  relations which reduce to the equality 1 • 1 = 1 • 1. On the other hand, using the 
action of  the r(s - r)-dimensional  toms on the coefficients of  the Laurent polynomial 

1 - ( r e ( x )  + . . .  + p s ( X ) )  

defining the mirror in Conjecture 4.1.9, one can reduce to only one independent pa- 
rameter, for instance, the unique coefficient br,.,,-r of p,.(X) = b . . . . .  X~l_r. By setting 
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q := b ...... and Xli.j ] := Xj, i, we can identify the variety Y0* in 4.1.9 with a toric 
compactification of the affine hypersurface L(X) = 1. [] 

Using the explicit description of the multiplicative structure of the small quantum 
cohomology of G(k, n), it is not difficult to check Conjecture 4.2.2 for each given r 

and s: 

Example 4.2.5. The Lax operator of the Grassmannian G(2, 4) is 

X[I,I ]-~- X~ l l ]  (X[2,1 ] -}- X[] ,2]) -}- X~l l ]X[2,2 ] -}- x~l,2]X[2,2] + qX~12]. 

Its Newton polyhedron is isomorphic to 3(2,4)  from Section 2.1. 

Example 4.2.6. The Lax operator of the Grassmannian G(2, 5) is 

X[i,1] -}- X~l l ] (X[2 ,1 ]  ~- X{ l ,2])  q- X[211 ] (x [3, ] ]  -{- X[2,2]) 

-}-X~12]X[2,2 ] + X~12]X[3,2] + q X ~ 1 2  ] . 

Its Newton polyhedron is isomorphic to A(2,5)  from Section 2.2. 

5. Hypergeometric series 

5.1. The trick with the factorials 

If X is a Calabi-Yau the complete intersection of hypersurfaces of degree ll, 12 . . . . .  lr 

in P", then the generalized hypergeometric series 

~ (llm)!(12m)!... (lrm)!qm 
CPx( q) : -(-~. )-n~ 

//7=0 

is the main period of its mirror X*. As is well known, one can obtain the instanton num- 

bers for X by a formal manipulation with this series, see e.g. Ref. [7] and Section 6.2. 

More precisely, one transforms the Picard-Fuchs differential operator P annihilating the 
series ~x  to the form D2K~D 2 (where D = qO/Oq) and reads off the nd from the 

power series expansion of the function K: 

oo 

K(q)=l l l2"" lr+ ~ ndd3 qd 
1 - -  qd" 

d=l  

It is important to observe that the power series ~x  can be obtained from a power 
series 

1 qm 
Av(q) = ~ (m!)n+ 1 

m=0 
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by the multiplication of its ruth coefficient by the product (llm)!(12m)!... (lrm)!. On 

the other hand, the power series Av can be characterized as the unique series Av = 
1 + . . .  solving the differential equation ((qO/Oq) n+l - q ) A v  = 0 associated with the 
small quantum cohomology of pn. This differential equation arises as the reduction of 

the first-order differential system 

0 
q~qS = p o S 

for a H*(P")-valued function S = So + SIp + ... + Snp ~, where p ~ H2(P n+I) is 
an ample generator, {1 ,p ,p  2 . . . . .  p ' }  is a basis for H*(Pn),  and po is the operation 

of quantum multiplication with p in the small quantum cohomology of Pn. Since it is 

well known that the small quantum cohomology ring of pn is defined by the relation 
( p  o)'7+1 _ q = 0, one finds immediately comes to the differential equation. In particular, 

we see that the function Av is uniquely determined by the small quantum cohomology 

ring of V = P". 

It is natural to try to use these ideas to obtain q~x from Av for varieties other than P", 
for example for Grassmannians or other Fano varieties. If it works, this method allows 

one to find instanton numbers without knowing an explicit mirror manifold. We will 

formulate this trick in some generality below. 
Let V be a smooth projective variety, which for reasons of simplicity of exposition 

is assumed to have only even cohomology and that H2(V,Z) ~ H2(V,Z) ~ Z. Let p 

be the ample generator of H2(V,Z), "y a positive generator for H2(V,Z). We denote by 

lv E H°(V) the fundamental class of V and by ( - , - )  the Poincar6 pairing. The small 
quantum cohomology ring QH*(V) of V is the free Q[ [q] ]-module H*(V,Q[ [q ] ] )  

with a new multiplication o determined by (A o B, C) = (A, B, C) = ~,,~_0(A, B, C)mq m 
where 

(A,B,C>m v f = l ~ , 3 , m ~ ,  = e~(A) t3 e~(B) tO e~(C) 

[Mo,3 ] 

are the 3-point, genus O, Gromov-Witten invariants, see Ref. [18]. The operator of 
quantum multiplication with the ample generator p E H2(V,Z) defines the Quantum 
Differential System, see e.g. Ref. [ 19]: 

0 
- - S = p o S ,  
Ot 

where S is an series in the variable t = log with coefficients from H*(V,Q). The 
Quantum Cohomology D-module is the D-module generated by the top components 
(S, I v) of all solutions S to the above differential system. In the case under consideration, 
it will be of the form D/DP, for a certain differential operator P. 

Definition 5.1.1. The A-series of V is the unique solution of the Quantum Cohomology 
D-module of the form Av oo with 1. ---- ~ m = l  a m q  m ao = 
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Let X be the intersection of hypersurfaces of degree Ii, 12 . . . . .  Ir in V. In other words, 
X is the zero-set of a generic section of the decomposable bundle g := O(llp) ® 
O(12p) 0 . . .  • O(Irp). 

Definition 5.1.2. Let Av = ~-]~m~l amq m be the A-series of a Fano manifolds V. Define 

the E-modification of Av as follows: 

(3O r 

qSg(q) : :  ZamH(ml i ) !qm"  
m--O i=1 

Definition 5.1.3. Assume that X C V has trivial canonical class, i.e. X is a Calabi-Yau 

variety. We say that the trick with the factorials works, if the function q0s is equal 

to the monodromy invariant period 4~x of the mirror family X* in some algebraic 

parametrization. 

If  the trick with the factorials works, the usual formal manipulation (see Ref. [7], 

Section 6.2) with the series ~ s  produces the instanton numbers for X! 

Remark 5.1.4. 
(i) It is possible to formulate the trick with the factorials in much greater general- 

ity [27,8]. 

(ii) The A-series Av very well can be identically 1, but if V is Fano, it will contain 

interesting information and it is in such cases that the trick with the factorials has a 

chance to work. 

(iii) A better formulation uses instead of Av a certain cohomology-valued series Sv, 
whose components make up a complete solution set to the quantum D-module. Instead of 
the factorially modified series qss one has a factorially modified cohomological function 

Fs. We say that trick with the factorials works, if Sv and Fs differ by a coordinate 
change [27,8]. Such a theorem is a form of the Lefschetz hyperplane section theorem 
in quantum cohomology. 

(iv) Givental's mirror theorem for toric varieties [21] implies that the trick with the 
factorials works for complete intersections in toric varieties. 

(v) More generally, it follows from a recent theorem of Kim [27] that the trick with 
the factorials works for arbitrary homogeneous spaces. 

(vi) Tjctta has applied the trick with the factorials successfully in a non-homogeneous 
case [35]. 

5.2. Hypergeometric solutions for Grassmannians 

In this paragraph we apply the above ideas to the case of Grassmannians. 
In [ 8], we describe a simple rule for writing down the GKZ-hypergeometric series 

AP(~,,O associated with the Gorenstein toric Fano variety P(k,n)  in terms of the corn- 
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binatorics of a certain graph. Here we give a formula for AP(~,~) without going into the 

details: 

where we put s;,,j = m if i > k - 1 or j > n - k - 1. 

Example 5.2.1. G(2,5): 

Example 5.2.2. G(3,6): 

We conjecture an explicit general formula for the series AG(~,~) (q) of an arbitrary 

Grassmannian: 

Conjecture 5.2.3. Let AP(~,~) (q, 4) be the A-hypergeometric series of the toric variety 

Pz) as above. Then 

&(k,n) (4) = Aww) (47 1). 

Using the explicit formulas for multiplication in the quantum cohomology of Grass- 

mannians [9], one can write down the Quantum Differential System for G( k, n) and 

reduce this first-order system to a higher-order differential equation satisfied by its com- 

ponents. In particular, one can write down the differential operator P annihilating the 

component (S, 1) of any solution S. 

Below we record some of the (computer aided) calculations of the operator P we 

did (D denotes the operator a/at = qa/dq) : 

~(2~4) 

G(2,5) 

G(26) 

G(3,6) 

D5 - 2q(2D + l), 

D7(D-l)3-qD3(11D2+11D+3) -q*, 

D9(D- 1)5-qD5(2D+ 1)(13D2+ 13Df4) 

-3q2(3D+4)(3D+2), 

D”(D - 1)4 - qD4(65D4 + 130D3 + 105D2 + 400 + 6) 

+4q2(4D+3)(4D+5), 

The operator for G( 2,7) is 
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D I I ( D -  I ) 7 ( D - 2 ) 7 ( D - 3 ) 7 ( D - 4 )  3 

-½qD7(D - 1 )7(D - 2 )7 (D  - 3)3(173D 4 + 340D 3 + 272D 2 + 102D + 15) 

-2qZD7 (D - 1 )7 (D - 2)3( 1129D 4 + 5032D 3 + 7597D 2 + 4773D + 1083) 

+~q3DT(D - 1)3(843D 4 + 2628D 3 + 2353D 2 + 675D + 6) 

I 5 -lq4D3(295D4 + 608D 3 + 478D 2 + 174D + 26) + ~q , 

while the one for G(2,  8) takes about two pages. Clearly, since both the structure of  the 

quantum cohomology ring and the hypergeometric series are very explicit, one should 

seek a better way to prove Conjecture 5.2.3. 

Nevertheless, using the above operators one obtains by direct computation the follow- 

ing: 

Theorem 5.2.4. The conjecture 5.2.3 is true for G ( 2 , 4 ) ,  G ( 2 , 5 ) ,  G ( 2 , 6 ) ,  G ( 2 , 7 ) ,  

G ( 3 , 6 ) .  

6. Complete intersection Calabi-Yau 3-folds 

6.1. Conifold transitions and mirrors 

Now we turn our attention to the main point of  the paper, namely the construc- 

tion, via conifold transitions, of  mirrors for Calabi-Yau 3-folds X which are complete 

intersections in Grassmannians G(k, n). 
By Theorem 3.1.7, the singular locus of  a generic 3-dimensional complete intersection 

X0 of  P(k ,n)  with r hypersurfaces HI . . . . .  Hr of  degrees dl . . . . .  dr ( [Hi ]  = di[H], 
i = 1 . . . . .  r)  consists of  

p = d l d 2 " " d r  (k-l~-~[-'d(Wi'J))\ i=l,j=, 

nodes, where d(Wi.j) is the degree 'of  Wi,j with respect to the generator H of  the Picard 

group of  P(k, n). On the other hand, by Corollary 3.2.7, X0 is a flat degeneration of  

the smooth Calabi-Yau 3-fold X c G(k, n). 
The small crepant resolution f i (k,  n) > P (k, n) of  the ambient toric variety induces 

a small crepant resolution Y ~ Xo. Hence Y is a smooth Calabi-Yau complete inter- 

section in the toric variety ,B(k, n),  which is obtained from X by a conifold transition. 

Theorem 6.1.1. Let p be the number of  nodes of  Xo, and let a = (k - 1 ) (n  - k - 1). 
Then the Hodge numbers of  X and Y are related by 

h TM (Y) = h l'j (X) + a 

and 
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h 2'l(Y) = h 2"1(X) + a - p .  
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Proof By construction, Y is a complete intersection of general sections of big semiample 
line bundles on i ( k , n )  (i.e. line bundles which are generated by global sections and 
big). Using the explicit formula for ht ' l(Y) from Ref. [5], Corollary 8.3 and the 
fact that the only boundary lattice points of A(k ,n)  are its vertices, we obtain the 
isomorphism Pic(Y) ~ Pic(if) ,  which gives the first relation. On the other hand, the p 
vanishing 3-cycles on X that shrink to nodes in the degeneration must satisfy ot linearly 
independent relations by [ 16], and the second relation follows. D 

The mirror construction for complete intersection Calabi-Yau manifolds in toric va- 

rieties given in [4,5] provides us with the mirror family of Calabi-Yau manifolds Y*. 

The generic member of this family is non-singular (it is obtained by a MPCP-resolution 

of the ambient toric variety). There is a natural isomorphism of the Hodge groups 
H 1'1 (Y) ~ H 2'1 (Y*) (see Ref. [4,5] ). 

During the conifold transition from X to Y, we have increased the "K~ihler moduli", 

that is, the rank of H l'l. This says that we should really look at the one-parameter 
subfamily of mirrors given by the subspace of H 2"1 (Y*) corresponding via the isomor- 

phism above to the divisors on Y which come from X. For this reason, the generalized 

hypergeometric series '/~x of X* is a specialization of the monodromy invariant period 

integral of the mirror family Y* to the subfamily Yo* defined in Conjecture 4.1.9. 

Let V j, . . . . .  V Jr be convex polyhedra as in Definition 4.1.6. Denote by V(k ,  n) the 
Minkowski sum of V j  I . . . . .  V j  r. Then V(k,  n) is a reflexive polyhedron and Pv(k,,~) is 

a Gorenstein toric Fano variety defined by a nef-partition corresponding to the equation 

dl ÷ . . . ÷ d r = n .  

Conjecture 6.1.2. After a MPCP-desingularization of the ambient toric variety Pv~k,,~, 
the general member Y0* of the special l-parameter subfamily is a Calabi-Yau variety 

with the same number p of nodes as X0, satisfying a - p relations. A small resolution 
X* of Y0* is a mirror of X. 

Remark 6.1.3. The statement 6.1.2 has been easily checked for the two simplest cases of 
Section 2, where the toric mirror construction reduces to a hypersurface case. However, 

singularities of Y0* are more difficult control for 4 remaining cases which can not be 

reduced to Calabi-Yau hypersurfaces in 4-dimensional Gorenstein toric Fano varieties. 

6.2. The computation of instanton numbers 

We denote by Xa,,...,Jr C G(k, n) a Calabi-Yau complete intersection of r hypersur- 
laces of degrees dl . . . . .  dr with the Grassmannian G(k ,n)  C P(D - I .  We denote by Y 
the toric Calabi-Yau complete intersection in if(k, n) obtained by a conifold transition 
via resolution of p nodes on the degeneration Xo of X (h l ' l (X)  = 1), and by ce the 
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Table 1 
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X h2 ' l ( x )  x ( X )  hl ' l (Y)  h2'l (Y) x (Y)  a p 

X4 c G(2 ,4 )  89 - 1 7 6  2 86 - 1 6 8  1 4 
XI.L3 C G(2 ,5 )  76 - 1 5 0  3 72 - 1 3 8  2 6 
X1.2,2 C G(2 ,5 )  61 - 1 2 0  3 55 - 1 0 4  2 8 
XI.H,1.2 C G(2 ,6 )  59 - 1 1 6  4 52 - 9 6  3 10 
Xt....,l C G(2, 7) 50 - 9 8  5 40 - 7 0  4 14 
Xi....,l C G(3 ,6 )  49 - 9 6  5 37 - 6 4  4 16 

number of relations satisfied by the homology classes of the corresponding p vanishing 

3-cycles on X. 
In Table 1 we list all cases of Calabi-Yau complete intersection 3-folds X in Grass- 

mannians and collect the information about topological invariants of X and their conifold 

modifications Y. 
Recall the (standard) formal procedure used to compute the instanton numbers. (More 

details can be found e.g in Ref. [7].)  We set 

CPx( z ) := Z bmzm 
m~O 

to be the generalized hypergeometric series (with variable z) corresponding to the 

monodromy invariant period of the mirror X*. As explained in Section 5.1, one can start 
with the A-series for the Grassmannian, and apply the trick with the factorials to find 

the coefficients bin. 
Then ¢bx (z)  satisfies a Picard-Fuchs differential equation 

Pq~x( z ) = 0 ,  

where P is a differential operator of order 4 having a maximal unipotent monodromy 

at z = 0. We compute P by finding an explicit recursion relation among coefficients bm 
of the generalized hypergeometric series @x(z ). To bring P into the form D2-~D 2, one 

has to change the coordinate z to q = exp(qol ( z ) /qbx(z  )) ,  where ~l  is the logarithmic 
solution of P. To obtain K, it is convenient to use the Yukawa coupling. In the coordinate 

z it has form 

Kzzz = ~2 x ( z ) 

where K} 3) is some rational function of z that can be determined directly from P. The 

Yukawa coupling in coordinate q then is of the form 

Kqqq = Kq (3) 

where 
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oo m3 qm 
K~ 3) = no + Z nm- 1 ~_ q---m 

m=l 
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and n,, are the instanton numbers for rational curves of  degree m on X. 
From Proposition 5.2.4 and Kim's  Quantum Hyperplane Theorem [27],  we have the 

following 

Theorem 6.2.1. The virtual numbers of rational curves on a general complete intersection 

Calabi-Yau 3-fold in a Grassmannian are the ones listed in the tables of  the next section. 

7. Picard-Fuchs operators and Yukawa couplings 

7.1. Xl,l,3 C G ( 2 , 5 )  

bm 
(m!)  (m,)(m!) 5 ( 3 m ) ' Z  ( m ) ( ~ ) ( m )  2 

r,s 

P D 4 - 3 z ( 3 D  + 2 ) ( 3 D  + 1 ) ( l l D  2 + l i D  + 3) 

- 9 z 2 ( 3 D  + 5) (3D + 2) (3D + 4) (3D + 1 ) 

X~3~ 15 
1 - 11 • 33Z - 39z 2 

nm nl = 540, n2 --- 12555, rt 3 = 621315, n4 = 44892765, n5 = 3995437590 

7.2. Xi,2,2 C G ( 2 , 5 )  

bm 
(m!)  (2m) !) 2 

(m!)  5 ~ ( m ) ( ; ) ( s m )  2 

P 0 4 - 4 z ( l l D 2  + l l D  + 3 ) ( 1  + 2 D )  2 - 16z2(2D + 3)2(1 + 2 D )  ~- 

2O K~ 3) 
1 -  l l . 2 4 z - 2 8 z  2 

nm nl = 400, n2 = 5540, n3 = 164400, n4 = 7059880, n5 = 373030720 

The locus of  conifold singularities in the toric variety P ( 2 , 5 )  consists of  two 
codimension-3 toric strata of  degree 1. This gives 6 nodes on the generic complete 
intersection of type ( 1 , 1 , 3 )  in P ( 2 , 5 )  C pl0 and 8 nodes on the generic complete 
intersection of  type ( 1,2, 2) in P ( 2 ,  5) C p10. 
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Z3. X1.133,2 C G ( 2 , 6 )  

bm 
( m , ) 4 ( 2 m ) , )  Z ( m )  ( ~ )  ( m )  ( ; )  ( t )  2 

(m!)6 r,s,t 

P D 4 - 2z (4 + 13D + 13D 2) ( 1 + 2D)  2 

- 1 2 z 2 ( 3 D  ÷ 2 ) ( 2 D  ÷ 3) (1  + 2 D ) ( 3 D  ÷ 4) 

28 
K~3) l - 26 .22z  - 27 • 24z 2 

nm nl = 280, n2 = 2674, n3 = 48272, n4 = 1279040, n5 = 41389992 

The locus of  conifold singularities in the toric variety P ( 2 , 6 )  consists of  two 
codimension-3 toric strata of  degree 2 and one codimension-3 toric stratum of de- 

gree 1. This gives 10 nodes on the generic complete intersection of type (1 ,1 ,  l, 1,2) 
in P(2,  6) C p14. 

7.4. Xl,t,l,l,l,1,1 C G ( 2 , 7 )  

bm 
(m!) 7 2 

( m ' )  7 r,~s,~u ( m r ) ( ~ ) ( m ) C ) ( 7 ) ( ~ ) ( m )  

P 9D 4 - 3z ( 15 + 102D ÷ 272D 2 ÷ 340D 3 + 173D 4) 

- 2 z 2 (  1083 + 4773D + 7597D 2 + 5032D 3 + 1129D 4) 
+ 2 z 3 ( 6  + 675D + 2353D 2 + 2628D 3 + 843D 4) 
- z 4 ( 2 6  + 174D + 478D 2 + 608D 3 + 295D 4) + zS(D + 1) 4 

4 2 -  14z 
K~3) 1 - 57z - 289z 2 + z 3 

nm nl = 196, n2 = 1225, n3 = 12740, n4 = 198058, n5 = 3716944 

The locus of  conifold singularities in the toric variety P ( 2 , 7 )  consists of  two 
codimension-3 toric strata of  degree 2 and two codimension-3 toric stratum of de- 
gree 5. This gives 14 nodes on the generic complete intersection of type (1, 1, 1,1, 1, 1) 
in P ( 2 , 7 )  C p20. 

Z5. Xl,l,l,l,l,l C G ( 3 , 6 )  

The locus of  conifold singularities in the toric variety P ( 3 , 6 )  consists of  two 
codimension-3 toric strata of  degree 2 and two codimension-3 toric strata of  degree 
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6. Th i s  g ives  16 n o d e s  on  the  gene r i c  c o m p l e t e  in te r sec t ion  of  type  (1 ,  1, 1, 1 ,1 ,  1 ) in 

P ( 3 , 6 )  C p19. 

bm 
( m ! )  6 
(m!) 6 r,~s,f,u (~) (tr) (7) (~) (7) (7) (1~) 2 

P D 4 - z (6  + 4 0 D  + 105D 2 + 130D 3 -I- 6 5 D  4) 

+ 4 Z 2 ( 4 D  + 5 ) ( 4 D  + 3 ) ( D  + 1) 2 

42  

K~3) 1 - 65z  - 64z  2 

nm nl = 210 ,  n2 = 1176,  173 = 13104,  r/4 = 201936 ,  n5 = 3 8 2 4 0 1 6  
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