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Introduction 

A deformation theory has been introduced by Siersma [Si 11 for the simplest class 
of non-isolated singularities X: hypersurfaces with a smooth one dimensional 
singular locus ~ and transverse to a general point of E an AI singularity. He 
considered deformations, loosely speaking, such that Z stays inside the singular 
locus of the deformed X. This notion has been extended by Pellikaan [Pe 1] and 
has been studied further by the authors in [J-S 11 and [J-S 2]. Let us be more 
precise about the deformation functor we are interested in. Let C be a category of 
spaces (e.g. those of germs of analytic spaces). A diagram of spaces Z s ~ Xs, flat 
over some base space S, is called admissible iffZs ~ ~xsls, where CCxs/s is the relative 
critical space as defined by Teissier l-Te, p. 5871. Now let Z ~ X be an admissible 
diagram over the spectrum of the ground field. Then the functor of  admissible 
deformations, Def(Z, X): C--*Set, is defined by: 

S~{isomorphism classes of deformations of 
~ X over S which are admissible}. 

Of course, in general one expects this deformation functor to be obstructed. That 
this is also the case (in general) when X is a hypersurface in C 3, with a one 
dimensional reduced 2~, is shown by a beautiful example, due to Pellikaan. He 
considered the singularity X, defined by (yz) 2 + (xz) 2 + (xy) 2 = 0, with Z defined by 
the ideal (yz, xz, xy). He gave an admissible deformation over the space S defined 
by the equations ea = eb = ec = 0 in C 4, and showed that there are obstructions. This 
example has been worked out further in [J-S 1], IJ-S 2] and [J-S 3, Example 3.3]. 

The first example of an obstructed rational singularity has been given by 
Pinkham [Pil. He showed that the base space of a semi-universal deformation of 
the cone over the rational normal curve of degree 4 is isomorphic to the space S 
above. The nice thing is that the examples of Pellikaan and Pinkham are closely 
related: the normalization of Pellikaan's example is Pinkham's example! Or, to put 
it in another way, Pellikaan's example is a projection into •3 of Pinkham's 
example. 
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One of the main purposes of this paper is to prove that under some 
assumptions on X and Z, Def(27,X) and D e f ( ~ X )  are naturally equivalent. 
Here ~ X  is the normalization of X and Def(JT~X) is the deformation 
functor of the diagram. This is done, in quite a general setting, in Sect. 1. 

Our hope is that the study of admissible deformations of non-isolated surface 
singularities in IE 3 will help us understand deformations of normal surface 
singularities better. This hope is somewhat justified in Sect. 2, where we give local 
proofs of some results of Wahl [Wa 2] on co*-constant deformations. 

In Sect. 3 we give some further applications and discuss some examples. 
Furthermore, there is an appendix which contains results from commutative 
algebra that are used mainly in Sect. 1. 

In the forthcoming article [J-S 4] we determine the structure of the base 
space of a semi-universal deformation of rational quadruple points by projecting 
these in ~E s. We hope to give more applications in the (near) future. 

Conventions. By a space we always mean an analytic space germ or the spectrum of 
a local ring. Typical names for spaces are X, S, 27 etc., for rings R, P, S etc. For a 
function f e tE{Xo ..... xn} we denote by J( f )  the Jacobian ideal of f For an ideal 
I C C{Xo .... , x,} we denote by SI the ideal {g e I I J(g) C I} and call it primitive ideal 
of  L In case that I is a radical ideal ~I is simply the second symbolic power of I (and 
the quotient JI/ l  2 is the torsion part of 1/12). References to the appendix are made 
by putting an A in front of a number. 

1. The equivalence of functors 

Consider an n-dimensional hypersurface germ X with singular locus 2~ in 
codimension 1, i.e. of dimension n - l .  We will prove that under certain 
circumstances there is a natural equivalence 

Def(27,X) -% Def (X~X) ,  

where Def(~---,X) is the deformation functor of the diagram of the normalization 
map ~ X ,  i.e. the functor of simultaneous normalization of X (see [Bu]). 

The problem with simultaneous normalization over an infinitesimal basis is 
that one cannot use the usual construction of integral closure in the total quotient 
ring to get ~s  out of Xs: over S = Spec(k[e]/(~2)) every element e/x is integral for 
x e r a non zero divisor. This is reflected in the fact that the natural forgetful 
transformation D e f ( ~ X ) ~ D e f ( X )  is not always injective. 

It appears that the missing bit of information to construct X out of X is just the 
conductor C: = ~x(CP~t, ~)x). We can consider d~yc as a module over d7 x. When we 
deform Ox flat over S to an Sxs, it turns out that deforming the r r to an 
S-flat d~xs-module r is equivalent to deforming the conductor C fiat to an Cs. 
However, the conductor C is a very special ideal in d~x: the fact that d~ carries a 
ring structure is equivalent to: 

Ring condition (R.C.) 

�9 ~ x ( C ,  C)~ *,  ~,,~x(C, 69x) 

The last statement makes sense over any basis S, and it turns out that elements of 
D e f ( ~ X )  (S) correspond to deformations of X and C to Xs and Cs for which Cs 
still satisfies the corresponding condition (R.C.). To be precise, one has the 
following general theorem: 
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Theorem (1.1) Let . g ~ X  be a finite surjective and generically injective mapping. 
Let Z be the subspace of X defined by the conductor ideal C = ~rnx(6~:t, Ox). Assume 
that: 

i) ~ is Cohen-Macaulay 
ii) X is Gorenstein. 
Then there is a natural equivalence of functors 

Def(X-~X)--}Def(Z % X, R.C.). 

Here the second functor describes deformations of the diagram Z ~ X for which the 
ideal of Z s in X s satisfies condition (R.C.) 

The next thing to do is to relate (R.C.) to admissibility (see the introduction and 
the references there). For this we need some more conditions on X and Z. 

Theorem (1.2) Let Z ~ X be an admissible diagram. Assume that: 
i) X is a hypersurface 

ii) Z is Cohen-Macaulay of codimension 2 
iii) E is reduced. 
Let Zs c~ X s be any deformation of this diagram over S, and let fs  = 0 define X s. 

Then equivalent are: 
i) the map ev(fs):Nzs~g?xs is the zero map, 

ii) the ideal I s of Z s satisfies (R.C.), 
iii) the diagram Z s c~ X s is admissible. 

When we combine Theorems (1.1) and (1.2) we get the following: 

Theorem (1.3) Let .~--}X be a finite, generically injective map. Let Z be the 
subspace of X defined by the conductor. Assume that: 

i) X is Cohen-Macaulay, 
ii) X is hypersurface, 

iii) E is reduced. 

Then there is a natural equivalence of functors 

D e f ( s  

To complete the picture we state one other theorem: 

Theorem (1.4) Under the same conditions as in Theorem (1.3) one has that the 
natural forgetful transformation Def(~'~X)--*Def(.,Y) is smooth. 

Theorems (1.3) and (1.4) together imply that the base space of the semi- 
universal deformation of ~ is, up to a smooth factor, the same as the base space of 
the functor Def(Z, X). So the whole complexity of deformations of normal surfaces 
is reflected in the theory of admissible deformations of weakly normal (i,e. 
generically transverse A1) surfaces in II~ a. 

The rest ofthis paragraph is devoted to the proofs of the above stated theorems. 
For notational convenience and clarity of exposition we change from geometric 
language to algebraic language. We will adopt the conventions as formulated in 
the beginning of the appendix. So the local ring of X will be/~, the total space X s of 
a deformation over S will have the flat S-algebra R as local ring, etc. Let QR D R be 
the total quotient ring of R. 
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Definition (1.5) A fractional ideal is a finitely generated R-module M such that: 
i) MZQR 
ii) M contains a non-zero divisor. 

Lemma (1.6) i) I f  ffl is a fractional ideal in QR and M is an S-flat R-module, tlien M 
is a fractional ideal in QR. 

ii) Let M and N be fractional ideals in QR. Then HomR(M, N) is also a 
fractional ideal and can be identified with { x e Q R I x . M C N }. 

Proof. Left as an exercise to the reader. We only note that the map from 
Hom~(M, N) to QR is given by: (~o:M~N)~-~q~(m)/m (m non-zero divisor in M). 

Proposition (1.7) Let R be a Gorenstein ring over S, i.e. cos/s ~ R. Then the duality 
functor M~-*M': = HomR(M, R) on the category of R-modules has the following 
properties: 

i) it converts fractional ideals into fractional ideals. 
ii) It  converts MCM's  over S to MCM's  over S (see (A.5)) .  

iii) I t  is an inclusion reversing involution on the category of fractional M C M '  s 
over S. 

iv) I t  commutes with specialization for MCM's ,  i.e. (~)v= (M~). 

Proof. i) follows from (1.6) ii) and ii) follows from the Gorenstein assumption and 
proposition (A.11) i). The involutivity iii) results from (A. 11) ii), whereas iv) follows 
from (A.8)iii) [and (AA0)]. [] 

When a fractional M C M  happens to be an overring/~ of the ring R, then its 
dual module C = HomR(/~, R) is an ideal in R, called the conductor of/~ over R. This 
conductor has a special property: 

Proposition (1.8) Let I~ 3 R be a fractional M C M  over S and let C C R be its dual 
module. Then equivalent are: 

i) /~ is a ring (with ring structure induced from R C QR). 
ii) The ideal C satisfies the Ring condition ( R.C.), i.e. the natural inclusion map 

HomR(C, C)~ HomR(C, R) 

is an isomorphism. 

Proof ii)=~i): as we have/~ = HomR(C , R) by (1.7)iii) we see that if HomR(C, C) 
~Hom~(C,  R) then /~ gets the ring structure as the endomorphisms of the 
R-module C. 

i)=~ii): for this we need the "duality lemma for finite maps" (see EHa, Ex. 6.10, 
p. 239]) or "change of rings isomorphism" (cf. A,9) 

Hom~(M, Hom~(R, N))~ HomR(M, N). 
(Here M is any finitely generated/~-module and N any R-module.) Now it is easy to 
see that the conductor C is also an/~-ideal, so we can take M = C and N = R in the 
above formula to get Homa(C,C)=HomR(C,R) .  But deafly one has 
HomR(C, C)_~Hom~(C, C). Combining these last two facts we get Hom~(C, C) 
= Homa(C, R). [ ]  

Proof of  Theorem (1.1) Start with a map ~--+X as in the statement of the theorem. 
Consider a deformation X s  over S. Then the category of diagrams )Ts-~Xs 
corresponds exactly to the fractional MCM's  for the ring R = 60xs having tP~ as 
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special fibre. By (1.7) and (1.8) the duality functor transforms these into diagrams 
Zs c_, Xs  for which the ideal satisfies (R.C.). 

We now turn to the proof of Theorem (1.2). Let P be the local ring of the 
ambient space, which is regular over the local ring S of the base. We assume that X s  
is a hypersurface, so the local ring R of Xs  is of the form R = P/(F), where F e P is a 
non-zero divisor. Let I be the ideal ofZ s in the ring R, so the local ring of 2; s is R/I.  
As a subspace of the ambient space, Z s is given by an ideal I e in the ring P. By 
assumption, Zs is CM over S of codimension 2. This implies that the equations of 
Ss are of a special form. 

Lemma (1.9) There exists a free resolution of Iv as a P-module of the following 
form: 

0 ,P" M pr+ 1 A 
~I e ~ O.  

Here M is a certain r x (r+ 1) matrix and the generators di of I e (i.e. the components 
of the map A)  are given by the r x r minors of  M. 

Proof. The resolution of/-p over P has the form as above, by the theorem of 
Hilbert-Burch-Schaps (see [Ar, pp. 16--17]). As Ie is S-flat by assumption, we find a 
resolution as above over the ring P. [] 

Because Zs is a subspace of Xs  we have F e l e ,  i.e. we can write: 

F =  ~. o~" A i 
i = 0  

Proposition (1.10) There is a free resolution of I over P of the form: 

0 ~t~+1 a ,p~+l  ~ I  ,0 .  

Here the matrix 1~I is obtained from the matrix M by adjoining the vector 
(ao, oq . . . . .  ~,) as zeroth column, so det(M)= F. 

Proof. As we have R / I = P / I  e we get an exact sequence of the form: 

O~ P . F-~ I p - H  ~O.  

The result now follows from (1.9) and the following commutative diagram from 
which one can conclude the exactness of the bottom row. 

0 , pr ~ pr+ 1 , I v ~ 0 

q, 4: [] 
0 ) pr+l a~ p~+l a ,  I , 0 

Corollary (1.11) i) The module I has a 2-periodic resolution over the ring R of the 
following form: 

... , fg , ~ -  , f~ ~I , 0 .  

Here ~ = M m o d F  and ~ = A �9 is the Cramer matrix of  ~, i.e. the matrix having as 

entries the r x t-minors of ~. ~ and ff are free R-modules of  rank (r + 1). 



532 T. de Jong and D. van Straten 

ii) The dual module I v= HOmR(i ' R) has a 2-periodic resolution over the ring R 
of  the form: 

Here P ' i s  the transpose of  the map 4. 
iii) One has 

I ~ Coker(~) ~ Ker(r ~ Im(~)  

and 
I v~ Coker (~ 3 ~ Ker (4 ~) ~ Im (~  3- 

Proof. It is a standard matter to come from the resolution over the ring P to a 
resolution over R. (Matrix factorization, see [Ei].) Hence we get i). ii) is obtained by 
dualizing i) and using iii), which follows from the 2-periodicity of the complex 
under i). [] 

Let N:  = Homp(Iv, P/Iv) be the normal bundle of Zs in the ambient space. Let 
us consider the evaluation map for F = X ~ i '  ~i: 

ev(F): N ~ R/ I  

( ~ 0 : / l ~ n ~ ) ~ -  hi. 

The pivotal result about the evaluation map is the following: 

Theorem (1.12) With the notation as above, the following are equivalent: 
i) HomR(I, I ) =  HomR(l, R), i.e. I satisfies (R.C.).  

ii) The entries of the matrix ~t' are in I. 
iii) ev(F) : N-~ R/ I  is the zero map. 

Proof. By (1.11)iii), an element 6 ~ H o m a ( I , R ) = I ' i s  represented by an element 6' 
of (~ in  Im(~) .  To evaluate 6 on an element i e I, represent i by an element i 'e  (q 
and let 6' act on i'. As 8'eIm(~U') we see that the ideal generated by the matrix 
elements of ~"  (or ~) is the ideal generated by the 6(0, 6 ~ I ,  i e I. Hence i)r 

Because Zs is CM over S of codimension 2, a generating set of N can be 
obtained by "perturbing" the matrix M (see JAr, pp. 16-21]). To be more precise, 
let 2 be any r • ( r+  1) matrix with entries in R. Then one has: 

r - - 1  

/k A (M) ^ 

So 2 gives rise to a normal vector n ~ E N corresponding to the homomorphism 

n2: Iv-oR~I,  

r - 1  

A (M) ^ 

A little calculation then shows that 

ct(n x) = T r ( ~ .  2), 

where �9 is the matrix obtained from ~ by erasing the 0th row. 
When we let 2 run over the elementary matrices eo, 1 <i<=r, O<=j<=r, we get 

�9 (n ~'~) = ~'ij 

and hence the equivalence between ii) and iii). [] 
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Remark (1.13) Property ii) in (1.12) can be reformulated as a property of the 
matrix i~ or ~ and is called the Rank condition in [Ca] and [M-P]: an 
(r + 1) x (r + 1) matrix �9 is said to satisfy the Rank condition if the ideal generated 
by the r x r-minors o f ~  is the same as the ideal generated by the r x r-minors of the 
matrix obtained from �9 by deleting the first (zeroth) column. Catanese [Ca] also 
calls this the Rouchr-Capelli property. In any case, the abbreviation (R.C.) seems 
extremely appropriate. For a discussion of the equations defining the ring 
HomR(I, I) we refer to [Ca] and I-M-P]. 

Proof of theorem (1.2) By (1.12) we have that (R.C.) is equivalent to the condition 
that ev(F) is the zero map. By [J-S 1 (3.31)] or [J-S 2] we have: I f [ i s  a reduced ideal 
in/~ then 

ev(F) is the zero map r (F, Jp)C I. 

Hence, under the assumptions of (1.2) we have indeed: 

1= Is satisfies (R.C.),r ev(F) is the zero map r Xs c~ Xs is admissible. [] 

Remark (1.14) Let I be an MCM ideal in a hypersurface ring R satisfying (R.C.) 
and let /~ = Homa(I, I )=  I v3 R the ring extension of R belonging to it. As the 
complex (1.11)i) is 2-periodic, it is not hard to compute all the higher Ext's of / .  The 
result is: 

�9 HomR(l, I) =/~ 

�9 Ext2k+t(I,I)=N I 
�9 Ext~k(I, I) = 1~/I J k = O, 1, 2, . . . .  

In fact, taking HomR(I, --) of the exact sequence 

O ~ I ~ R ~ R / I ~ O  

we get a long exact sequence 

0 ~HomR(I, I)~HOmR(I, R)~HomR(I,  R/I)---,Ext~(1, I) ~ Ext,(I,  g ) ~  . . . .  

As I is assumed to be MCM (over S) and R ~ e~Rj s we have that Extl(I, R)= 0. 
Hence, I satisfies (R.C.)~-N~ Extl~(I, 1), where N=HomR(I ,  R/1) is the normal 
bundle ofX s in Xs. Note that this normal bundle is also equal to the normal bundle 
of 27 s in the ambient space Home(Ie, Rfl) if the evaluation map is zero. 

The 2-periodicity gives that Ext2s(I, I) is a quotient of HomR(I, I). One can 
check that annihilator is precisely I. 

Thus we get a Yoneda Ext-pairing 

Ext,(I, I) x Ext,(I, I) ~ Ext2(I, I) 

Y : N x N --, I~/I 

In general, this pairing is not symmetric. One can proof that the symmetrization 
Y+ of Y takes values in R/I and can be identified with the Hessian ~I of [J-S 1 
(3.32)]. To be more precise, an element in the image of Y, considered as an element 
in HomR(I, I )modI ,  happens to have a well-defined trace in R/I, i.e. ~I = tr(Y). We 
expect this refined hessian Y to contain interesting new information. 
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In the deformation theory of X together with the module I one encounters 
natural maps T:~Ext~r + 1(1,1). We only state: 

* T~ is the zero-map. 

* Tx~--*Ext2x(l,/) has as kernel 1/(f,J(f)). 

Indeed, for g e I one can lift the module I over the hypersurface with equation 
f + e . g ,  ~z=0. But it requires extra conditions on g that the deformed I satisfies 
(R.C.) or stays admissible (see [J-S 1, J-S 2]). 

Remark (1.15) It is easy to see that i~/I is always a Gorenstein ring. Indeed, 
because I is a canonical ideal one has a~/t ~ Ext~(/~/I, I). So one easily gets the 
result from the exact sequence: 

0-~ I-~ ~ ~ ~/I  ~ 0 .  

To conclude this section we give a result that implies Theorem (1.4). 

Theorem (1.16) Let X--. X be a mapping and X C Y an embedding of X in a space Y 
smooth over the base field. Then: 

i) There is a natural transformation of functors 

Def(X --* X)---* Def(X --* Y). 

ii) The natural transformation D e f ( ~  Y)~Def(.~) is smooth. 
iii) I f  ~ is Cohen-Macaulay, X is a hypersurface in Y and the map . ~ X  is 

generically injective, then the transformation i) is an equivalence of functors. 

Sketch of proof. Let (gs- ,Xs)  ~ Def(X-*X) (S). One can extend the inclusion X C Y 
to an inclusion Xs C Ys (= Yx Spec(S)), because all deformations can be realized by 
embedded deformations. Now the composition )~s--,XsC Ys determines a well- 
defined element of Def(~--* Y)(S). This gives i). Statement ii) follows immediately 
from the smoothness of Y. For statement iii) we do construct an inverse to 
transformation i), i.e. an imagefunctor. Let (gs ~ Ys) be an element of Def(3~--, Y)(S). 
Le t /~  be the local ring of 3~ s and P the local ring of Y. Because/~ is Cohen- 
Macaulay (over S), it has a presentation as a P-module as the cokernel of a square 
matrix ~ [in fact, it is the transpose of the matrix h~t of(1.10)]. Now define X s to be 
the hypersurface in Ys given by the equation det (.N) = 0. It is now easy to check that 
(,~s-,Xs) ~ Def(~--,X)(S). [ ]  

2. oJ*-constant deformations 

The notion of ~o*-constant deformations has been introduced by Wahl in [Wa 1 ], 
in order to describe "unusual" deformations of minimally elliptic singularities. The 
purpose ofthis paragraph is to give an interpretation ofo~*-constant deformations 
in terms of triple point loci. We also give a formula for the dimension of the space 
describing obstructions for lifting elements of co*. As special cases we recover 
results of Mond and Pellikaan. 
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Consider a normal surface singularity )7 and a one parameter deformation 
over a small disc S in ~E: 

~-~s 

{0} s 

The relative dualizing sheaf O~s/S is flat over S and specializes to o~t on the special 
fibre. The same is not true for the dual ~0", however. We define ~ to be the 
specialization cokernel: 

= dim(Coker(~*=/s| (9~-> oJ~)). 

This is an analytic invariant depending on the one parameter deformation. The 
one parameter deformation is called aJ*-constant iff ~ = 0, i.e. iff ~o~=/s is flat over S. 

Now consider a weakly normal surface singularity X C C 3 with one dimen- 
sional reduced singular locus Z. Let I C P = ~E{x, y, z} be the ideal defining Z. The 
conormal bundle 1/12 has torsion, which is exactly ~I/I 2. One would like SI/I 2 to 
"count" the number of triple points. Indeed, if E is the curve consisting of the 
coordinate axes, one has ~I--(xyz)+ i2, so ~UI 2 has dimension one. Now consider 
a one parameter deformation of Z over a small disc S: 

~ 2 ;  s 

{0) s 

Let I s be the ideal of Zs and Sis the (relative) primitive ideal. We define an invariant 
7 associated to such one parameter deformation: 

7 = dim(Coker (Sls/I] | ~ I/I2)). 

So if V = 0 and the general fibre Es has only ordinary triple points, then their 
number will be equal to dim SI/I 2. 

Now, when we consider a one parameter admissible deformation of our weakl~ 
3 normal X C C ,  then we get one parameter deformations of the normalization X 

and of the curve 

X c, X s and ~ 
(0} s 

{ 0 ) .  s 

by the results of Sect. 1. So one has two analytic invariants, ~ and 7. 

Theorem (2.1) In the above situation o~ = 7. 

Corollary (2.2) (Mond and Pellikaan [M-P]). I f  ~ is Gorenstein and there exists a 
disentanglement of  X (i.e. a one parameter admissible deformation such that on a 
general fibre one has only ordinary double curve, pinch points and triple points, see 
[J-S 3]), then the number of  triple points is equal to the dimension of SI/I 2. 

Proof. This is immediate from (2.1), because o~*-constant is automatic for 
Gorenstein singularities. [ ]  
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Corollary(2.3) [Wa2]. Consider a smoothing .~s~S of X. Then, if [3 is the 
dimension of the smoothing component on which this smoothing occurs and .P,~ is a 
Milnor fibre of the smoothing, one has that f l -  2~ and Z(~s) - ct are independent of 
the smoothing. 

Remark (2.4) This result has been proved in [Wa 2] under the assumption that 
the smoothing can be globalized in a certain strong sense. That this property is 
always fulfilled has been shown by Looijenga [Lo]. We like to mention that our 
proof uses only local methods. 

Proof of (2.3)Consider a general projection .V,s~XsCtE3• and let D 
respectively T denote the number of pinch points, respectively the number of triple 
points on a general fibre of Xs, say X,. Choosing a defining function fs for Xs, one 
also has a certain number of A1 points outside the zero fibre of f~. It has been 
proved in [J-S 3] that [3 + 2 T is independent of the disentanglement. From (2.1) it 
follows that [3-2ct also is. Now by Mond [Mo] or Siersma [Si 2] one has: 
z(X~)-1 = ~A1. It is an easy exercise in topology to show: 

X(3~s) = z(X~) + Z(2~s)- O + T, 

2~ being a general fibre in the deformation of Z. 
By Buchweitz and Greuel [B-G]: Z(~f~) = 2 T -  #(2~) + 1. 
Hence X(~ )= ( j ( f ) -2VD~( f ) -# (Z )+2 ) -T ,  where j ( f ) =  #A~+D and 

VDoo(f) = D-- 2T. The numbersj(f) and VDo~(f) are invariants of the function, see 
[Pe 1] and [Jo] respectively, so the second part of the corollary also follows from 
Theorem (2.1). [] 

Coronary (2.5). The smallest smoothing component of a rational quadruple point 
consists of o~*-constant deformations. 

This corollary follows from "explicitly" writing down equations for a general 
projection of a rational quadruple point. Details will appear in [J-S 4]. 

Proof of Theorem (2.1) We already know that the conductor I x of ~--*X, i.e. the 
ideal of 2~ in X, is a canonical ideal of R. Hence, by the change of rings 
homomorphism we get: 

cox ~ = Hom~(lx, (9~) = Homx(Ix, (gs;). 

From the exact sequence: O~Ix~)x--*Or~O we get, upon dualizing to ~0 x = cox: 

When we take Homx(Ix, - )  of this last sequence we get: 

0 --* r ~ co~--, Homx(Ix, co~) ~ O. 

When we are in a situation of a deformation over S, we get a similar diagram 
over S. From the fact that �9 is deformed in a flat way, one deduces easily that: 

ot = dim Coker(nomx~(Ix~, co~)| ~) x-* Homx(I x, tot)). 

By change of rings again we have: 

nomx(Ix, cot) = nomr(l/~I, coz) 

and 
Homx~(l x~, cor~) = Homr~(Is/ j ls, coz~). 
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So now we reduced the problem completely to a problem of curves in IE a. For these 
we have an exact commutative diagram: 

. . . .}  

0 - }  

0 0 0 

II~/X~ -+ Is/x] -+ I s E I ~  -+ o 

~Is/I ~ ~ Is/I ~ --} ls /II  s -+ 0 

o --, ( f I s / I ~ ) | 1 6 2  -+ I / I  2 --+ ~ -~ o 

0 0 0 

The exactness of the middle column follows essentially because a reduced curve in 
C 3 is syzygetic, and is proved in [Pc 2 (4.3)]. The injectivity in the last column 
follows from the fact that ~UI 2 is the torsion of UI z, as follows from an easy 
diagram chase. 

The snake 1emma applied to the following diagram gives that the 
Coker(~Is/I~| 2) is exactly the torsion of ~r 

o --, ~ 1 s / I ~ |  + U I  2 - }  <g - }  o 

o --+ ~ I / I  ~ _+ ; / ~ z  _+ I / I ;  - }  o 

One also has Homx(~,oax)=Hom~(I/II, o~x). From the exact sequence 
O~Is/IIs4Is/~Is-+rg-+O we get by (A.3) the following long exact sequence: 

Homxs(Is/IIs, r~x~) O~ Homxs(Is/Ils, oax) 

--} Homx(I/~ I, mr)-+ Ext~s(Is/~ Is, mrs) 

-~Ext~fls/IIs,,O~=)-+Ext~(~, o~-+0 
because Ext~s(ls/IIs, rOx~)=Tors(Is/JIs)~=O, the first equality because of local 
duality. Now Ext~(rg, rox) is by local duality isomorphic to Tors(~),  whose 
dimension is equal to y. On the other hand, the invariant ~ was already seen to be 
equal to the cokernel of the second map in the above sequence. So, to conclude the 
proof of the theorem we only have to see that Ext~(Is/IIs, rOx~) is a finite 
dimensional vector space, as then ~ and y as the dimensions of kernel resp. cokernel 
of multiplication by s will be equal. But this Ext t is by local duality isomorphic to 
the lE-dual H~o}(Is/IIs), which is finite dimensional exactly when the depth of Is/IIs 
is two outside 0 ~ Zs. This is obviously the case, however. [] 

There is an obstruction space for lifting elements of ro]. As one would expect, 
this obstruction space is Ext~r(co~, 0~), see [Wa 1 ]. The next theorem brings this in 
connection with a module on Z. 

Theorem (2.6) In the situation )7-} X ClE 3, ~ a normal surface singularity and X 
weakly normal with reduced singular locus Z, one has: 

Ext~.(me, (-9 x.)'=Tors (Ix/12x) = ~ I/(I 2 + f ) ,  
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where I x is the ideal defining F, C X, I the ideal defining ~ C ~a and f a defining 
function for X. 

Corollary(2.7) (Mond and Pellikaan [M-P (4.3)]). I f  ~ is Gorenstein then 
SI/(IZ + f)=O, i.e. f generates ~I/I 2. [] 

We will give another proof of this Corollary after theproof  of the Theorem. 
Remark that the dimension offI/( l  z + f )  only depends on X, although one can get 
very different X and 27 for the same X. 

Proof of Theorem (2.6) For a morphism of rings S--,R, M a finitely generated R 
module and N a finitely generated S module, one has the change of rings spectral 
sequences [C-E, pp. 349-350]: 

Ext,(M, Ext,(R, N)) =~ Ext~ + q(M, N) 

Ext$(To~(N, R), M) =:, Ext~+q(N, M). 

From the "beginning" of these spectral sequence it follows easily that: 

Tors Ext,(M, Horns(R, N) = Tors Ext,(M, N) (*) 

Tors Ext~(N| M) = Tors Ext,(N, M). (**) 

We have to calculate Ext~,(Ix, ~3), a torsion module. So by (*) with M = Ix, N = ~3, 
S = (~xR = 03 one gets: 

Ext,(Ix, d~) = Tors Ext ix(Ix, 03). 

From the following sequence, already used in the proof of (2.1): 

we deduce that Ext,(Ix, ~P~) = Ext,(Ix, o~). 
Using (**) with S=(gx, R=~r ,  N=Ix ,  and M--co~ we get: 

Tors Ext,(Ix, aJ~) = Tors Ext~(Ix/I~, co~). 

But this last module is by local duality isomorphic to (Tors(Ix/I2x)) ~. [] 

As promised, we now give a very simple argument for the fact that Ix/Iex is 
torsion free, in case X is Gorenstein. Indeed, because Ix is a canonical ideal, one 
has that Ix is isomorphic to ~3, so there exists a g ~ Ix such that Ix = ~x" g- (Such a 
g is classically called an adjoint of X. The surface in C a with equation g = 0 cuts out 
,~ on X, precisely with multiplicity two.) So lx/I~=(9~c.gflP~, g2 which is 
isomorphic to ~ ,  hence torsion free as an Or-module. 

It is natural to ask what the annihilator of ~I/I 2 is, in case ~ is Gorenstein. The 
following answer is given essentially in [M-P (4.3)]. 

Theorem (2.8) The annihilation of ~I/I 2, in case )7 is Gorenstein, is the ideal 
generated by the ( r -  1) x ( r -  1) minors of  M, where M is the matrix of (1.9). 

To prove this, we use the following "well-known" proposition: 

Proposition (2.9) (see e.g. [B-V]) 

~I/I 2 is isomorphic to Ext~(og~, d~z). 
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Let us have a look how this isomorphism comes about. The following exact 
sequence is well known, obtained from (1.9) by tensoring with (9~ and then taking 
the transpose: 

0 'N r  ,(9} +1 ~rl~, O} >~o r ,0.  (1) 

Every element of S 1/12 can be represented by a function f such that X: = {f  = 0} 
is a hypersurface and gives rise to an exact sequence: 

0 ~ Nr ~ (9~ + * ~" I ~> (9~ + t > (9~. ,0.  (2) 

This sequence can be seen as obtained from the exact sequence (1.10) by taking 
Horn( - ,  Or). Note that the cokernel of ~ is Osc, so by restriction to Z we get ~ 
and that the fact that M ~ and ~ have the same kernel Nr (when restricted to Z) is 
just the expression of the fact that the evaluation map e v ( f ) : N ~ O r  is the zero 
map. From the obvious map from (2) to (1) one deduces the extension 

0--* ~ (_9~co~ ~ 0 .  (3) 

This sets up the isomorphism ~I/1 z ~ , Ext~(toE, d~x). 

Proof of Theorem (2.8) Look at the long exact sequence we get by taking 
Homz(- ,  r of (3), belonging to a generator f of ~I/P. 

This exact sequence reads as follows: 

0~Homr(cgx, Or)~Hom~(d~, d~r)~ Or ~Ext~(o~r, d~r)~0 

The last map is given by: 1 e r goes to the given extension, as one sees by diagram 
chasing. So, indeed, the last map is surjective. Now because d~ was isomorphic to 
Ix/I~, we see that the module Homr(d~, O x) is isomorphic to N~ (which also can be 
deduced from the fact that the matrix M" can be chosen to be symmetric). 

We thus get an exact sequence of the form: 

0~Hom~(~o~, ~)-~ N ~ ( g r - ~  I/I~ ~O. 

A further disentanglement of definitions then learns that the map Nr~(9 r is just 
the evaluation map ev(g), where g is an adjoint for f It is not hard to see that the 
image of ev(g) coincides with the ideal generated by the ( r -  1) x ( r -  1)-minors of 
the matrix M. [] 

3. Examples 

Consider a germ XCI~ 3 of a weakly normal surface and let 2; be the reduced 
singular locus of X. By Theorem (1.3) Def(Z,X) is naturally equivalent to 
D e f ( ) ~ X ) ,  where n : 2 ~ X  is the normalization map. Furthermore, by 
Theorem(1.4) the natural forgetful transformation D e f ( ~ X ) ~ D e f ( ~ )  is 
smooth. Consequently, the space T~ of first order deformations of X is a quotient 
of the space Tx(Z,X) of first order admissible deformations (see [J-S 1]). So in 
order to describe T~ in terms of TI(E, X 1 we have to identify those first order 
admissible deformations which deform X trivially. Recall that one can write 
Tl(Z,X)=Px(d)/(f,J(f)),  where Px(sr is the ideal of functions which are 
admissible on first order (see [J-S 1] and [J-S 2]). 

Theorem (3.1) In the situation as above one has: 

T,~ = Ta(Y,, X)/(Px. J(f) (= Px(~)/(f, ~x" J(f))) 
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Here r J( f )  is the ideal in (9~r generated by J(f). 

Proof Let (~, 77) the matrix factorization as in (1.11). So we have (9~ = Coker(~ "). 
If we choose a basis 1 = Uo, ul, . . . ,  u, for ~ "  we get an embedding 

i: ,17 ~ Spec(tE{x, y, z} | u2, ..., u,]) : = Y. 

Part of the equations of )~C Y is given by: 

~, u i . ~ = O  j = 0 , 1 , 2  .. . .  , r .  (*) 
i=0 

(For a more complete discussion of the equations of.l~ in Y we refer to Catanese 
[Ca] and Mond and Pellikaan [M-P].) To get T~ out of T1(2~, X) we have divide 
out the action of all the vector fields on Y, i.e. T~ =Px(d ) / ( f ,  Or(f)). As an 
~E{x,y, z}-module, Or is generated by ug. ~/dul, Uk" 8/dX, U k �9 8/~y, U k �9 O/8Z. 
Consider the matrix ~-tkz) (k = 0,..., r; l=  1 .. . . .  r) with entries: 

�9 i~<kl) = r + e. ~k" ~ ,  

where 6ij is the Kronecker delta. This matrix satisfies (R.C.) over the ring C[e]/(e2), 
as is easily checked. As det(~ ~tk,))= f + e. 6u "f, this gives a trivial deformation of 
X. But by differentiating (*) with respect to Uk" 8/OU~ we see that the effect of this 
vector field on the embedding ~ ( Yis just described by the matrix �9 "~kl). Hence, to 
get T~ from TI(~,X) we only have to divide out (;~.J(f) .  [] 

In general it is not easy to use this direct description of (9~- J(f). In fact we have 
another description of (9~. J ( f ) ~  t~ x. We can write: 

Of/Ox#= ~ coi#-A i ( ]=0,1 ,2  . . . .  ,n). 
i=0 

Theorem (3.2) With the notation and the assumptions as above one has that (9 ~ . J(f) 
is the ideal generated by the entries of the matrix to. ~ ~. 

Proof. The elements um (m = 0, l, 2 . . . .  , r) of tY~ correspond to the homomorphisms 
[u,,d : At~--~ P~,, of Homx(I, I) = d)~. 

So [umOf/dxk] : A~Y.tok,"/l~. ~'f,~. As we have relations of the form ~';',, �9 A~ 
= P[m" A~ (modulo f )  we see that the homomorphism [um- Of/OXk] corresponds to 
multiplication by ~tou" P[m e ~x. []  

To compute T~ we can use any X which has ~ as normalization. We will give 
some examples. 

2 2 k Examples (3.3) 1) f = z  - y  ( y + x ) .  This is the Jg oo-singularity (see [Si 1]). The 
normalization .~ is smooth, and the ideal Pxi~)=(x~y,z ,  y2). The matrix 
factorization of f is given by: 

Furthermore, one can take for the to-matrix the following: 

co= y(3y;2x")  , so t o ' ~ ' =  I--y(3y+2x" ) z(3y+2x ~) 
\ 2 "z - 2  �9 y(y +x~'), 
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So indeed (~c" J ( f )  = (y2, xky, Z) and thus T~ = 0. 
2) f = x z Z - - y 2 ( y + x k ) .  This is the Qk, ~-singularity (see [Si 1]). We take 

o(7 
Because (gx,~Coker(~ "), we see that (~  is generated as (gx-module by 1 and 
u :=  xz/y.  The equations of )~ in 112 4 are: 

u 2 = x .  (y + x k) ; uy = xz;  uz = y(y + xk). 

The inverse image of the singular locus under the normalization map is given by 
u2= x k + 1;y = 0; z = 0, and so is an Ak-singularity. The coordinate transformation 
u'= u; x ' =  x; y '=  y + xk; z '= z + UX k- ~ transforms the equations into (u')2 = x' .  y'; 
u'. y' = x ' .  z'; u'. z' =(y,)2. Hence, )~ is isomorphic to the cone over the rational 
normal curve of degree 3. It is well known that dim T~ = 2 (see [Pi]). One has 
((9 ~ . J ( f ) ,  f )  = (xy 2, xz, z 2, 3y 2 + 2xky) and Px(d)  = (y2, yz, xz, xky). (Computations 
left to the reader). Hence T 1 is represented by the classes of y2 and yz. 

3) f =  (yz) 2 +(zx)2 + (xy) 2. This is Pellikaan's example we considered in the 
introduction. Here one has ,(=Cone(lr : p l o p 4 ) .  By Pinkham (see [Pi]), 
dim T~ = 4. One can calculate that: 

Px(d)=(y2z, yz 2, z2x, zx 2, x2y, xy 2, xyz)=ma nI .  

One calculates that ((gx. J( f ) ,  f )  = m4c~I + J( f ) .  A basis for T] is represented by 
{xyz, y2z+yz2 ,  22X"~ZX 2, x2y+xy2}. Remark however that in this example 
dim TI(Y,, X )  = 7. 

We already remarked in the proof of Corollary (2.3) that the number of pinch 
points minus two times the number of triple points of a disentanglement only 
depends on the singularity one considers, and not on the particular deformation. 
We give an alternative proof of this fact. As always, ~ denotes the normalization of 
)~ and Z denotes the inverse image of Z under the normalization map. Consider the 
following invariant for a weakly normal surface in I~ 3 with reduced singular locus 
Z: 

VO(X) = ~(2~)- 2. ~(Z) + 2 - btX) .  

Here b(X) denotes the number of irreducible components of X. For example for the 
pinch point one has VD(X)=  0 - 0  + 2 - 1  = 1 and for the triple point one has 
VD(X)=  3 - 2 - 2  + 2 - 3  = -  2. That the invariant VD(X) is equal to the virtual 
number of D ~o Points of X as introduced in [Jo] can be deduced from the follow- 
ing theorem or by a compactification argument as in [J-S 1 (3.40)]. 

Theorem (3.4) In the situation above, consider a one parameter admissible defor- 
mation of  X over a small disc S. Let  X s be a general f ibre of  this one parameter 
deformation (or rather a suitable representative). Then: 

VO(X)=  Z VO(X, ,p) .  
peXs 

Proof  Let Z 8 be a general fibre of the one parameter deformation of Z induced by 
the one parameter admissible deformation of X. Similar for ~. By "Buchweitz and 
Greuer'  [B-G]: 

~(z)= 1 -x(z,)+ Z u(Z~,p) 
PeSs 
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and similar for ~. Now Zs is a 2:1 cover of Z~, and it is an easy exercise in topology 
to show: 

Z(~,,)=2.X(Zs)+b(X)-I + y. (b(X,) - l ) .  
peXs 

Filling in these two formulas in the definition of VD ~ves us the statement of the 
theorem. [] 

Example (3.5) Let us have a look at example (3.3) 3) again. There are two 
disentanglement components, one with one triple point and six pinch points, the 
other one with four pinch points only. Because in this case the dimension of ~/jI 2 is 
one, one sees that the smallest component is co*-constant. Here/~(Z) = 2,/t(2~) = 7, 
and, of course, the number of irreducible component is one. 

Example (3.6) Consider a curve singularity 2; of Gorenstein type 3 consisting of 
six lines in IE 3. Hence it is the cone over six points in p2, which do not form a 
complete intersection. Let I be the ideal defining 2;. It will be generated by four 
cubics. A generic element of degree 6 in 12 will define, considered in ~a, a non- 
isolated singularity X, whose normalization s has as exceptional divisor of the 
minimal resolution a curve of genus 4 (and self intersection -6) .  The structure of 
~I/I 2 has been investigated by J. Stevens (unpublished). Part of the results can be 
summarized as follows: 

*) Ifthe six points in F2 are the vertices of a complete quadrangle [i.e. we can 
take I to be (xyz, yztr, zxa, xya), where ~r=x+y+z],  then we have dim~I/I 2 = 4  
(~l/I 2 is cyclic with generator xyza). Moreover, there exists a one parameter 
deformation of 27 with on a general fibre 4 triple points, as can be seen by replacing 
tr by tr+s. 

**) In all other cases, dim ~ / / I2=3 ,  as there are always three linear in- 
dependent quintics with double points at the six points in PL Moreover, if the 
points lie in general position, then there does not exist a one parameter 
deformation such that on a general fibre three triple points occur. 

***) In the case that three of the six points lie on a line (and the rest general) 
one can describe the points as the three singular points of a three nodal quartic 
together with three of the four points of intersection of the quartic with a general 
line. One can show that in this case 27 has a one parameter deformation with three 
triple points on a general fibre. 

From these results, one deduces easily, using Theorem(2.1) that for the 
normalization s of X one has in case: 

*) There exists a non-trivial oJ*-constant deformation. 
**) There does not exist a non-trivial co*-constant deformation. 

***) There exists a non-trivial a~*-constant deformation. 

Appendix: algebraic preliminaries 

In this appendix we formulate some results from local commutative algebra which 
will be of use in Sects. 1 and 2 of this paper. Lacking a comprehensive reference and 
for convenience of the reader we include proofs. The results are centered around 
the interaction between the notion of flatness, base change properties of Ext, 
Cohen-Macaulay properties and duality. 

In the sequel we adopt the following conventions: 
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* S is a noetherian local ring with maximal ideal ms and residue field k = S/ms. 
* R is a noetherian local S-algebra. 
* We also consider R-modules M, N .... .  and we always assume them to be finitely 
generated. 
* When we put a bar over a module M we always mean M = R | 1 7 4  
where /~= k|  
* For some results we assume that R is a quotient of fiat S-algebra P such that/~ is 
a regular local ring. 

Proposition (A.1) Let M and N be two S-flat  R-modules. Consider the natural 
mappings 

~p,: Ext,(M, N)| k ~ Ext~(~,  N). 

Then: i) I f  tp~ is surjective, then it is an isomorphism. 
ii) I f  tpi and qh-1 are surjective, then Ext,(M, N) is S-flat. 

Proof. This is a slight variation on the "Cohomology and base change theorem" 
(see [Ha, pp. 282-290]). Let F. ~ M be an R-free resolution of M. Then the 
complex N ' : =  HomR(F., N) consists of finitely generated R-modules which are 
S-fiat and has Ext/R(M,N) as cohomology groups. We have N'=HomR(F.  ,N) 
=Homk(F.  , N) and as M is S-fiat, M is resolved by the complex F. Hence, the 
cohomology of the complex N" computes Ext~ (J~r, N). Consider how the functor T i 
on S-modules: 

Ti: A~-* Ti(A): = Hi(N'|  

By the usual arguments one has: 

* T ~ left exact r Wi: = Coker(N i- 1 ~ N  ,) is S-fiat. 

* T i right exact r Ti(S)| for all A 

r is an isomorphism for all A. 

But also: T i right exact ~ T  i+1 left exact r  ~+~ S-flat .~  (local criterion for 
flatness, [Ma, pp. 145-149]) 

W t+ l |  s ~ W i+ l ~ T i+ 1(ms) ~ T i + 1(S ) 

r Ti(S)| Ti(k). 

From this the proposition follows. [] 

Corollary (A.2) Under the same assumptions as in Proposition (A.1)  one has: 
i) I f  Ext,(M, N) = 0 then Ext,(M, N) = 0. 

ii) I f  Ext~(/~, N) = 0 for k = i -  1 and k = i + 1, then Ext,(M, N) is S-flat and 
Ext~ (M, N) = Ext~ (M, N)| 

Proof. Statement i) follows easily from (0.1) together with the lemma of 
Nakayama, as we know that the modules Ext~(M,N) are finitely generated 
modules over R. For statement ii) note as ~a~+ 1 is surjective, the functor T ~+ 1 is 
right exact and as Ti+I(S)=0 by i), we find that Ti+l(ms)=O and hence q~i is 
surjective, so by (A.l)ii) we are done. []  

In case we have that the base space S is one dimensional one can formulate this 
result as follows: 
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Proposition (A.3) Let be given an exact sequence O--+ R ~ R-~ R ~O, where s is a 
parameter for S, and let M and N be two S-flat R-modules. Then there is an tong 
exact sequence: 

�9 8 . . . . .  + 

... ~Ext'R(M,N)~Extk(M,N)~Ext~(M,N)-+Ext'~ I (M,N)~ .... 

Proof Let F . ~ M  be a resolution of M over R. Then we have H'(Home(F., N)) 
= ExtR(M, N). However, Homt~(F., N) = F~.| ,~ t~N. Hence we have an exact 
sequence of complexes: 

O~ F ~| RN ~ EV| RN-~ F'|  aN ~O 

with F~-. M a resolution of A~f over/1. The proposition follows by taking the long 
exact ~ohomology sequence. 

Lemma (A.4) Let M be any finitely generated R-module and N be an S-flat 
R-module. 

Then: Ext~(M,N)=0  for i=O, 1,...,p implies 

Ext~(M,N)=0 for i=O, 1,...,p. 

Proof By [Ma, Theorem 28, p. 100] we have that Ext~(Ar = 0  for i=O, 1,. . . ,p 
is equivalent to the existence of elements ~,  ~/~, i=O, 1 .... , p such that 

i) xi ~ AnnR(M), 
ii) the :~, form a regular/~-sequence. 
Now let mi. m2 ..... m, be R-generators for M and x e R any lift of one of the :~. 

Then x . M C m s . M ,  so det(x. I - B ) .  M=O, (where B is any matrix of x. with 
respect to the generators m~ of M) by Cramers rule. As the entries of the matrix B 
are in the maximal ideal, we see that the elements y~: =det(x~. I - B ) e  AnnR(M) 
project to :~. As these form a regular ~-sequenee and N is S-flat, we have that the y~ 
form a regular N-sequence (see [Ma, pp. 150-151.]). Hence the lemma follows by 
application of [Ma, Theorem 28] again. []  

Definition (A.5) Let R and S above and let M be an R-module. We say that: 
* M is Cohen-Macaulay over S (CM over SI if and only if 

i) ~ is a Cohen-Macaulay/~-module [i.e. d i m ~ ( ~ ) =  depthR(34)]. 
ii) M is S-flat. 
We call d: = dim~(M) the dimension and c: = dim ( /1 ) -d  the codimension of M 

over S. Ifc  = 0 we say that M is maximal Cohen-Macaulay over S(M is MCM over 

* R is regular over S if and only if 
i) /1 is a regular local ring. 

ii) R is S-flat. 
We call N : =  dim(/~) the relative dimension of R over S. 
For  a local ring that is regular over S we will use the symbol P. We call 

oe/s: = P the dualizing module of P over S. 

Proposition (A.6) Let P be regular over S of relative dimension N. For an S-flat 
P-module M the following conditions are equivalent: 

i) M is CM over S of codimension c. 
ii) Extg( , cop) = 0 for i ,  c. 

Proof First assume i). The relation between depth and local cohomology (see 
[Gro, Corollary 3.10, p. 47]) tells us that H~(/~r)=0 for i <  N - c .  Then the local 
duality theorem for the regular local ring/~ (see [Gro, Theol:em 6.3, p. 85]) states 
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that H~(A3) is (Matlis-)dual to Ext,-i(A3, to~). Hence we have Ext~(A~, o~v) = 0 for 
k > c. The vanishing of the lower Ext's follows by Ischebek's lemma [Ma, (15.E), 
p. 104]), because the dimension o f ~  is N -  c and the depth ofo0p is N. Hence we get 
ii). To get i) from ii) one just reverses the above steps. [] 

Definition (A.7) Let P be regular over S and let M be a P-module which is CM 
over S of codimension c. The dual module of M is defined to be 

M v: = Ext,(M, toejs). 

An S-algebra R is called embeddable if R is the quotient of a ring P which is regular 
over S. I fR is Cohen-Macaulay over S of codimension c considered as a P-module, 
we define the dualizing module to be toR/s:= R v= Ext~,(R, me/s). 

Proposition (A.8) Let P be regular over S and let M be CM over S of  codimension c. 
Then one has: 

i) Ext~.(M, cOy~s) = 0 for k ~: c. 
ii) The dual module M ~ is S-fiat. 

iii) C ~  = (fi3) ~. 

Proof. Combine (A.6) with (A.2). In fact, for an S-flat module M, the Cohen- 
Macaulay property is equivalent to the above three properties. []  

Remark (A.9)  By the change-of-rings spectral sequence (see [C-E, p. 349]) 

E~ q = Ext~ (M, Ext,(R, NN))=~ExtV+a(M, N) 

one can relate Ext's over different rings. If R is embeddable and CM over S of 
codimension c as a P-module then one has an isomorphism 

Ext~ (M, toR/s) = Ext '+ c( M, tOP/s) 

for any R-module M. This also shows that co~/s is essentially independent of the 
choice of P in (A.7). 

Corollary (A.10) Let R be embeddable and CM over S of codimension c. Then one 
has: 

i) Propositions (A.6)  and (A.8)  hold for P replaced by R. 
ii) I f  M is C M over S of  codimension e considered as an R-module, then M is C M  

over S of  codimension e + c considered as a P-module. 

Proposition (A.11) Let R be embeddable and CM over S and let M be an R-module 
which is CM over S of  codimension c. Then one has: 

i) M~=Ext~(M, toR/s) is also CM over S of codimension c. 
ii) There is a natural isomorphism M - o ( M )  ~. 

Proof. It is not hard to see that by using (A.10) one can reduce to the ease that 
R = P, P regular over S. Consider a minimal free resolution F . - o M  of M over P. 
Because M is S-flat, the complex F. is a minimal free resolution for Af. Because 
is Cohen-Macaulay of codimension c over the regular local ring P, we conclude by 
the Auslander-Buchsbaum formula (see [A-B, Theorem 2.3, p. 397]) that the length 
of the complex F. is exactly e, i.e. the resolution looks like 

O~F~-oFc_ 1 ~ . . . ~ F l  ~ F o ~ M ~ O .  

When we apply H o m e ( - ,  P) we get the complex 

O-o F~--. F~-o.. .  ~ F~_ ~ ~ F~-o M~-oO , 
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where FY=Homr(F.,P). By (A.8) this last complex is exact, hence we get a free 
resolution of M:  As we already know that Mqs S-flat by (A.8) one can reverse the 
steps and the result follows. [] 
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