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Introduction Given a germ X = (X,p) of an analytic space with an isolated 
singular point p, one has a semi-universal deformation X ~ B. It has 
the property that all fiat families over a space Z with X as special fibre 
are induced by a map Z ~ B, which is unique on the level of  tangent 
spaces. The space B and the deformation 5F ~ B are unique, but only 
up to non-canonical isomorphism (see [5], [15], [19], [2]). The space B is 
called the base space (o f  the semi-universal deformation) of  X.  When X is 
a hypersurface, or more generally a complete intersection, then this base 
space B will be smooth, but in general B can be very singular and can 
have many components, even of  varying dimension (See e.g. [22], [12].). The 
Zariski tangent space of B can be naturally identified with the module Tx 1 , 
which for a hypersurface X defined by an equation f = 0, f E (9 := 
tI;{Xo . . . . .  x,} is just (9/(f, J(f)) ,  where J( f )  = (c~f/c~Xo . . . . .  Of/OXn) is the 
Jacobian ideal of f .  So in this case T} is finite dimensional if and only if X 
has an isolated singular point. When X does not have an isolated singular 
point, then the infinite dimensionality of Tx 1 is caused by the 'opening 
up' of the singularities transverse to the singular locus. A good example 
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to keep in mind is the Ak-series of deformations of the Aoo-singularity: 

A1 A2 A3 A4 A~ 

It seems natural to look for a special class of deformations, namely the 
class of deformations for which the singular locus of X deforms in a fiat way, 
so that this 'opening up' does not occur. Under appropriate circumstances 
one could hope to find a finite dimensional semi-universal deformation of this 
type. 

It is the purpose of this paper to develop just such a theory of special de- 
formations, which we call admissible deformations. This class of deformations 
has been first considered by SIERSMA [21] for hypersurfaces X with a smooth 
one-dimensional singular set E. He used such deformations to determine the 
homotopy type of the Milnor fibre of such singularities. Further investigations 
were carried out by PELLIKAAN in his thesis [16], where he mainly considered 
the case where the (reduced) singular locus E of X is a complete intersection. 
In this case the base space of the semi-universal admissible deformation turns 
out to be smooth. This paper can in some sense be seen as an extension of 
PELLIKAAN'S ideas to the case of a general Y., and it turns out that, even in the 
case that E is a space curve singularity, the base space of the semi-universal 
admissible deformation is almost never smooth. 

For us the importance of the theory of admissible deformations of hyper- 
surfaces lies in the applications it turned out to have to the study of isolated 
singularities of higher embedding dimension. For example, when we project a 
normal surface singularity X into IE 3, we will get in general a surface X with 
a double locus Z as image, and the admissible deformations of X are closely 
related to the deformations of .~, see [11], [12], [13]. In [12] the structure of 
the base space of the semi-universal deformation of rational quadrupel points 
was determined using this theory of admissible deformations. In particular 
the 'modulo 12, theory of 1.C turned out to be essential. 

The organization of the paper is as follows. In 1 we introduce the functor 
of admissible deformations Def(Y,,X) of a singularity X with a sub-space 
Y, of the singular locus of X as a sub-functor of the deformations of the 
diagram Z ~ X ,  and investigate the SCHLESSINGER conditions. Then we 
formulate a geometrical condition under which the forgetful transformation 
Def(Z, X) ~ Def(X) is injective. Furthermore, for hypersurfaces defined by 
a function f E ~{x0 . . . . .  xn} we define a functor Def(E,f)  and formulate 
the important notion of 12-equivalence. This then leads to two new functors 
M(E, X) and M(E,f) .  In 2 we restrict again to hypersurfaces and develop the 
infinitesimal deformation theory for hypersurfaces. We determine the tangent 
space T I(Z,X) of Def(E,X) and identify the obstruction space T2(Z,X). In 
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3 we put in some extra conditions on E, which allows us to get an in general 
much smaller obstruction space than the above T2(E, X). We also give some 
examples and applications. 

Conventions By a space we always mean an analytic space germ or appro- 
priate representative of  it. Typical names for spaces are X,  Y, T ,  E etc. 
When we say that 'Xs is a space over S'  we mean that Xs is a space with a 
map to Spec(S) or to S, depending on whether S is a ring (this is usually the 
case) or a space. In such a relative situation we do simply write Xs/S in cases 
where one usually should write Xs/Spec(S). Although we are not completely 
systematic in this respect, we do not expect any confusion to arise. 

Acknowledgement We would like to thank K. BEHNKE, J. CHRISTOPHERSEN, 
G.-M. GREUEL, A.J. DE JONG, D. MOND, R. PELLIr, AAN, F.-O. SCHREYER, 
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thesis of the first author, while he was supported by the S.M.C. with financial 
aid of the N.W.O. and the second by the Department of Social Security of  the 
Netherlands. Presently, the first author is supported with a stipendium of  the 
European Community. 

1 The Functor of Admissible Deformations 

A Basic Definitions Let X be a germ of  an analytic space. We want to 
define a special class of deformations of X which, intuitively, has to consist 
of those deformations of X for which the singular set of X deforms in a 
flat way. There are some difficulties with this naiv idea: the 'natural' analytic 
structure on the singular locus ~ x  of  X (as defined in 1.1) is usually not 
the analytic structure that is geometrically wanted for; one would like to take 
(~r However, the operation 'red' of taking reduction will not be the right 
thing to do when we consider infinitesimal deformations. Our strategy is as 
follows: we let E be the sub-space of  ~x  c X that we want to deform in a 
flat way (for example, think of E as (C~X)red) and require that the deformed E 
is still contained in the (relative) singular locus of  the deformed X. This leads 
to a reasonable deformation functor Def(E, X) of  what we call admissible 
deformations. The price one has to pay is that Def(E, X) becomes a sub- 
functor of  the deformations of the diagram E ~-~ X rather than of Def(X). 
This, however, is then resolved in I.B, where we show that under geometrically 
reasonable circumstances Def(E,X) is a sub-functor of Def(X). 

We begin with a definition of the critical locus of a map, and hence of the 
singular locus of  a space. 

Definition 1.I. Let X ~ Y be a fiat map, of relative codimension n. Let 
J(X/Y) := Fn(~l/y), the n-th Fitting ideal of the module of relative K~ihler 
one-forms, i.e. the ideal generated by the n x n minors of a presentation matrix 
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for f~l /y .  We will call J ( X / Y )  the Jacobian ideal of X ~ Y. The critical 
locus cg := ~ x / r  is the locus defined by J ( X / Y ) .  The critical space is cg 
together with 04 := ( g x / J ( X / Y )  as a structure sheaf. 

This definition can be found in [23], def.2.5, p.587. It is natural to consider 
the critical space again as a space over Y. One of the reasons to define the 
critical space in this way is because of the following 

Property 1.2. I f  

Xz , X  

Z , Y 

is a pull-back then 

C~Xz/Z 

1 
Z 

. Cgx/r 

b y  

also is, i.e. formation of  the critical space commutes with base-change. 
comes down to a simple property o f  Fitting ideals (see [23], p.570). 

This 

Definition 1.3. * A diagram over S is a triple (Zs, Xs, i), where Es and 
Xs are spaces over S and i : Es ~ Xs is a map over S. Usually we will be 
sloppy and say that Y,s ~ Xs is a diagram over S, without even mentioning 
the map. 

�9 A morphism of  diagrams is defined in the obvious way by a commutative 
diagram. 

�9 A diagram Es ~ Xs over S is said to be admissible, if the map 
i : Zs ~ Xs factorizes over the inclusion map r~xs/s ~ Xs.  

�9 A morphism between admissible diagrams over S is just a morphism of 
the underlaying diagrams over S. 

�9 Let ZT ~ XT be a diagram over T and let T ~ S be a map. For 
example, T might be a point. A diagram Zs ---, Xs over S is said to be a 
deformation of the diagram ET ~ XT iff: 

i) Es and Xs are flat over S. 

ii) (Y~T ~ XT)  ~ (ZS ~ Xs)  X s T .  

* A deformation Ys ~ Xs  of ZT ~ XT is called admissible or is said to 
be an admissible deformation if the diagram Es ~ Xs is admissible. 
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Let C denote the category of local analytic C-algebras. It has a full 
sub-category Ca consisting of Artinian algebras. Let Set denote the category 
of sets. 

Definition 1.4. Let E --, X be an admissible diagram over Spec(ll~). The 
functor 

C , Set  

~isomorphism classes of } 

S~ ~ [deformations of I2-4 X over S 

is called the functor of  deformations of  the diagram E --* X and is denoted by 
Def(E ~ X). 

The functor 

C , Set  

S, , ~ isomorphism classes of admissible ; 

t deformations of Z-- ,  X over S J 
is called the functor of  admissible deformations and is denoted by Def(E, X). 

We remark that the base-change property 1.2 is needed to make 
Def(E, X) into a functor. Remark further that Def(E, X) is a sub-functor of 
Def(Z ~ X). We do not make a notational distinction between these functors 
and their restriction to a sub-category Ca. 

Remark 1.5. Starting from an admissible diagram Zr  ---, Xr  one can, 
of course, define with the same ease a relative deformation functor 
Def(Er,  Xr)rel. These have had some use in [13]. 

We recall that if T' and T c O b ( C a )  then  ~ : T '  ---, T is called a simple 
surjection if ~ is a surjection and Ker(~) is a principal ideal in T' with 
Ker(~) �9 mr, = 0, where mr, is the maximal ideal of T' (see [19], 1.2). 

L e m m a  1.6. The functor F := Def(Z --, X) is semi-homogeneous, i.e. three of  
the four SCHLESSINGER conditions are satisfied: 

i) f ( k )  = {pt}. 

ii) F( T " x  r T') --* F(T") x F(r)F(T') is surjective for every simple surjection 
T' -4 T and every morphism T" -* T .  

iii) F(T'Xkk[e]/e 2) --~ F(T')  x F(k[e]/~ 2) is an isomorphism for all T ' .  

The proof is similar to [19], 3.7. In fact, for ii), if we are given deformations 
Es -4 Xs ,  Zs, ~ Xs, and Es,, ~ Xs,, (S ~ Spec(T) etc.) with 

, Xs,)• Xs,,)• , xs)  
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then the natural map 

gives a deformation of  the diagram over S'xsS" which restricts to the given 
deformations over S' and S". 

Proposition 1.7. Def(E, X) is a semi-homogeneous sub-functor of Def(X ~ X). 

Proof. Our definitions are casted in such a way that the proof  just becomes a 
repetition of  the proof  that the functor of  deformations with a singular section 
has an analogous property. That  case corresponds to E = {pt} and has been 
treated by BUCHWEITZ (see [3], p.79). We keep the notation as above, but 
now we are given Es ~ Xs, etc., which are admissible. We have to show that 
the diagram (*) under 1.6 in fact is admissible. It is clear that the map (*) 
factorizes over 

C~Xs',/s" H C~Xs'/S'" 
CgXs/S 

But by the base change property of  the critical locus 1.2 there is a natural 
morphism 

~x~,,/s" I_I ~xs,/s' ' ~xs,, I_Ix~ x~,/s,,• 
~r s/s 

which gives us the factorization which shows the admissibility of  (*). It is now 
clear that the result follows because Def(E -+ X) itself is a semi-homogeneous 
functor. [] 

Corollary 1.8. I f  T I(E, X) := Def(E, X)(k[e]/(e2)) is a finite dimensional vector 
space, then Def(X, X) satisfies the SCHLESSINGER conditions; i.e. Def(E, X) has 
a hull (i.e. there is a 'formal' semi-universal deformation). 

Proof See [19], 2.11. [] 

We indicated in [13] how one can under these circumstances in fact can 
get a convergent base space. 

Suppose that we have an admissible diagram E ~ X and an embedding of  
X in some smooth ambient space Y. Analogous to the functor Def(E, X) of  
admissible deformations one can define a functor Embdef(E, X) of  admissible 
deformations which can be realized inside Y. It is of  some importance 
to describe the relation between Def(E, X) and Embdef(E, X), because in 
practice one always describes X and E by equations, so an embedding is 
always implicit. We now shall make this relation more precise. 

Definition 1.9. Let Y be a smooth space. An embedded admissible diagram 
is a diagram Z ~ X ~ Y such that E ~ X is admissible. An embedded 
admissible deformation over S is a diagram Es ~ Xs ~-~ Ys ~ Y x S over 
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S such that Es ~ Xs is an admissible deformation of E ~ X. Morphisms 
between such objects are defined in the obvious way. The functor 

C ~ Set 

~ isomorphism classes of embedded admissible } 

S~ ~[deformat ionsof  I ; ~ X ~ Y  over S 

is called the functor of embedded admissible deformations and is denoted by 
Embdef(E,X), the space Y being understood. 

L e m m a  1.10. The natural forgetful transformation 

gmbdef(Y~, X) , Def(Y~, X) 

is smooth. 

This statement is completely analogous to the corresponding statement 
about ordinary deformations. We omit the proof and refer to [1] for further 
details. 

B lnjectivity The functor Def(E, X) of 1.A was defined as a certain sub- 
functor of deformations of the diagram E ~ X. We intended however to 
study some special class deformations of X, i.e. we would like to have a 
sub-functor of Def(X). This leads to the problem under which conditions the 
forgetful transformation 

Def(Y., X) , Def(X) 

is injective, i.e. conditions under which Def(E, X)(S) ~ Def(X)(S) is injective 
for all S in the category C. Intuitively, this should be the case when E 
can not 'move' inside cal. One expects this to be the case when E and cd 
are equal at the generic points. The problem is to find a good functorial 
way to reconstruct E from X alone. The conditions we find are probably 
unnecessarily strong, but they suffice for most applications. 

Theorem 1.11. Let E ~ X an admissible diagram and let I be the ideal of  Z 
in (gx. Assume that: 

i) X is Cohen-Macaulay. 

ii) E is Cohen-Macaulay of codimension c in X.  

iii) dim Supp(I/J(X)) < dim(E). 

Then the natural forgetful transformation 

Def(s X) , Def(X) 

is injective. 
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Proof. We first r emark  that  condit ion iii) implies that  Itlo}(I/J(X)) = 0 
for i >_ c, because local cohomology  vanishes above the dimension of  its 
support .  This in turn is equivalent  to the condit ion Nxd)( I /J (X) ,o)x)  = 0 
for i = 0, 1 . . . . .  c, where O)x is the dualizing sheaf  of  X.  

Now let Es ~ Xs be an admissible deformat ion  of  E ,--* X over S. 
Because Es '--* Cgs, where Cgs is the critical space of  Xs over S, we get an 
exact sequence of  (gxs-modules: 

0 , o~ff ' r , (gz s ) 0 (*) 

where ~ = l s / J ( X s / S )  (Is is the ideal o f  Es in (_9x s ). 
Now let Ogxs/s be the relative dualizing sheaf  o f  Xs over S. Because 

(gzs is S-flat  and (gZs is Cohen-Macau lay ,  it follows that  (gz s is relative 
Cohen-Macau lay ,  i.e.: 

i (_9 o~X/Xs( Zs, Ogxs/s) = 0 for i 4= c 

For  ~f" one can deduce f rom ~xLix ( I /J (X) ,o )x )= 0 for i =  0,1 . . . . .  c that  
gXL'Xs (~ff, O)xs/s) = 0 for 0, 1 . . . . .  c. (See e.g. [11], appendix.)  When  we take 
the long exact 8xL-sequence  of  (*) we find that  

(r v =, (OSs) v 

where we used the nota t ion  (_)v  = gxlCxs (_,  ~Xs/S). Dualizing again we get 
(see e.g. [11], appendix) :  

OZs ~ ((C%s)V) v 

Hence the arrow (gxs ~ Cg~'s is natural ly  identified with the composi t ion  
(gXs --* (9% ~ ((_9~sV) v. As the critical space Cgs is determined in a canonical  
way by Xs ~ S, we see that  we can reconstruct  Es ~ Xs f rom the m a p  
Xs ~ S alone; i.e. D e f ( E , X ) ~  Def(X)  is injective. [] 

Example 1.12. Let X c ~2 be defined by an equat ion f = 0, where f = 
x 3 + y 2  E ~[x,y].  So we have J(X) = (x2,y). 

Let E be the subspace of  the critical locus defined by I = (x, y). Consider  
the trivial deformat ion  of  X over ~[e]/(e2),  defined by the same function 
f ,  but now considered in C[e,x,y]/(e2). Let 11 = (x,y) c IE[e,x,y]/(e 2) and 
12 = (x + e,y) ~ IE[e,x,y]/(e2). Because x 2 = (x + e ) . ( x -  e) we see that  bo th  
11 and I2 cor respond to admissible deformat ions  of  the pair  Z,  X.  One can 
check that  these elements are different in Def(Z,  X)(r 

C Functors for Hypersurfaees  We now specialize to the case of  hypersurface  
germs X c C "§ . A hypersurface  singularity X is defined by a single equat ion 
f = 0, where f E (9 := ~{xo . . . . .  xn}. The singular locus CKx of  X is 
described by the ideal J(X) = (f,  J ( f ) ) ,  where J ( f )  = (@f/@xo . . . .  , @f/@x,) is 
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the Jacobian ideal of the function f .  When E is described by an ideal I c (9, 
then the condition of admissibility Z ~ Cgx is equivalent to: 

f E f I  := {g E (9[ (g,J(g)) c I}. 

As taking f of an ideal I is 'inverse' of taking derivatives of elements of I ,  
f I is called the primitive ideal of I ,  a name invented by R. PELLIr.AAN in 
[16]. 

As usual with hypersurfaces, it will be useful to distinguish between 
deformations of the hypersurface X and of the function f .  Therefore, we 
define a functor Def(Y., f )  of admissible deformations of Y~ and f : 

Definition 1.13. 

Def(Z,f)  : C 

Si  

, Set  

, {pairs (Zs,fs) such that Zs ~ Xs :=  f~-l(0) is an 

admissible deformation of 2 ~ X} / isomorphism. 

So if Zs is described by an ideal Is c 6/s := SSc~{xo . . . .  ,x,}, then 
(2s,fs) is admissible if and only if fs ~ fs Is, where fs Is is the relative 
primitive ideal : 

f s ls  := {g ~ (9/s I (g, Og/~xo ..... ~g/~xn) ~ Is}. 

Here of course isomorphisms are induced by coordinate transformations which 
act on functions by right equivalence. 

Note that we can think of Def(Z, f)  as a sub-functor of Def(Z -~ f ) ,  the 
functor of deformations of the diagram 

relative to the diagram {0} ~ ~ ,  see [3]. 
There is an obvious forgetful transformation 

Def(Y., f)  , Def(E, X). 

Important is the notion of 12 -equivalence that can be defined in the case 
of hypersurfaces. It turns out that for applications it is just this notion which 
makes the theory useful (see [12]). The idea is the following: the primitive 
ideal f l contains the ideal I 2. Functions f ~ 12 are in f I for 'trivial 
reasons' and should be considered as 'trivial' in some sense. This idea leads 
to the following definition. 

Definition 1.14. Consider an ideal I c (9. 
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i) For two functions f0)  and f(2) E (9 we write ftl) .,~ f(2) if and only if 
f~l) _ f(2) E 12. 

ii) For two hypersurfaces X/1) and X 12) we write X ~1) .-~ X (2) if and only 
if there are equations f(0 = 0 for X (i) such that f(l) .~ f(2). 

iii) .-~ is an equivalence relation, which we call 12-equivalence. 

There is of course an analogous notion of  I2-equivalence 'over S', for 
which we will use the notation " s .  So one can speak of  12- equivalence of 
deformations. Then we can define two further functors M(Z, f )  and M(E, X), 
called the functors of  admissible deformations modulo 12 : 

Definition 1.15. 

M(Z, f ) : S ,  

M(Z,X) :S, 

, Def(Z, f)(S)/',~s 

, Def(Z, X)(S)/',.s. 

Their importance lie in the following simple proposition: 

Proposition 1.16. The natural forgetful transformations 

Def(E, f )  , Def(E, X) 

M(E, f )  , M(E, X) 

are all smooth, and all four functors are semi-homogeneous. 

Proof These statements are essentially trivial. For example, let us prove that 
Def(E, f )  --. M(Z , f )  is smooth. Recall that smoothness of a transformation 
F --* G of  functors F and G means the following. For all surjections T ~ S, 
the natural map: 

F(T) , F(T)x~(r)G(S) 

is also surjective. 
So let Cs ~ Def(E,f)(S) ,  represented by a pair (Es,fs) where Zs is 

described by an ideal Is with generators As. Let fs,,~sgs, say 

fs  = gs + Z hs �9 As �9 As. 

(Here we omitted obvious summation indices.) 
Now assume that we have lifted (Es, gs) to an admissible deformation 

( E r , g r )  over T ,  where IT = (At) is the ideal of  Y,r. Then we can lift 
(Es,fs) in an admissible way over T by putting 

f r  : = g r + Z h r ' A r ' A r ,  
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where hT is any lift of the matrix hs. This fact just means that the transfor- 
mation Def(E, f )  ~ M(E, f )  is smooth. It is easy to see that M(Y.,f) is also a 
semi-homogeneous functor. (This comes down to showing that "~s is an 'ad- 
missible equivalence relation' in the sense of  [3]). We leave the straightforward 
details to the reader. [] 

2 Infinitesimal Theory 

We now turn to the description of the tangent space and obstruction space 
for the functor of  admissible deformations. We will carry this out only for 
hypersurfaces X c IE "+1 , so there are to consider the four functors introduced 
in 1.C. As these functors are all closely related, we will mainly discuss Def(Y~, f )  
and indicate only changes needed for the other cases. We try to keep our 
presentation as elementary as possible, leaving the problem of  finding the 
'right cotangent complex' for an other occasion. 

Although under the condition of  1.11 we have Def(E, X) c Def(X),  we 
want to point out the following practical point: because we defined Def(Z, X) 
as a sub-functor of Def(Z ~ X) we have to work with E explicitly, although 
it is determined by X. 

A Deformations of Z We start with a short review of the deformation 
theory for E alone, as this also serves to fix some notations and conventions 
that will be used in the sequel. 

Let Z be defined by an ideal I in (9 and choose generators A1, A2,...,Am 
for I .  Consider a presentation of E : 

0 ) ,~ > ~ ----* (9 ) (.gz ) 0 (1) 

Here ~ = ~ ( 9 . e i  and the map :~- ~ (9 sends ei to Ai. ~ is the module 
of relations between the equations Ai. We let ~0 c ~ be the sub-module 
generated by the 'Koszul relations' A i  " e j  - -  A j  �9 e l .  

For the deformation theory of  E is the so-called 'LICHTENBAUM- 
SCHLESSINGER complex' (see [14]) of  importance: 

LS : 0 > ,~ /~o  ) ,~- | (-gz ) f~l | (gz ) 0 

r i ) ~ r i  �9 e i  

ai 'ei ,  , ~_,ai'dAi 

(2) 

Here f~l := f~.+, is the module of  1-forms on (C n+l, 0). 
Let us denote the homology groups of this complex by Tz(Y~), TI (Y~) and 

T0(Z). Then one has: 

Fact 2.1. i) T0(Z) = f ~ ,  K~ihler 1-forms on E. 

ii) TI(E) = f I / I  2, where f I  is the primitive ideal as in 1.C. 
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iii) If  1; is Cohen-Macaulay of  codimension 2, then T2(Z) = 0. 
(Of course, only the last statement is non-trivial. For a proof  see e.g. [7].) 

Let D(1;) := Homz(LS, t~r.) be the dual complex. It reads: 

0 , (9 | (.or. ---+ ~-v ~ (~ /~0 )  v , 0  

0 , ;E~q(Ai) ' e  v 

E as" e v '.. ; (r ~ E a, .  ri) 

(3) 

Here (9 = (9~:.+~ denotes the module of  vector fields on (~'+1,0). The 
cohomology groups of  this complex are denoted by T~ T 1 (Y.) and T2(1;). 
Then one has: 

Fact 2.2. i) T~ = Or., vector fields on 1;, infinitesimal automorphisms 
of I;. 

ii) TI(Z) = Def(1;)(C[e]/(eE)), infinitesimal deformations of  1;. 

iii) TE(z) = obstruction space. This group is zero if Z is Cohen-Macaulay 
of  codimension 2. 

(For a proof see e.g. [6].) 

Note that the kernel of  the right hand map of  (3) is just the normal 
'bundle' N z  = H o m z ( I / I E ,  e)z). An element n E Nz  can be thought of  as 
a homomorphism I / I  2 -~ (gz and as a vector n = ~ n i . e  v E ~ v  with 
components n~ = n(Ai). 

Using this Nz  we can write down the usual exact sequence defining T 1 (1;) : 

0 , (gz , | | (gz , Ny~ , T I(Z) ~ 0 (4) 

A normal vector n ~ Nz gives rise to a deformation Z~ of  1; over C[e]/(e 2) 
defined by the ideal I~ = (AI + e ' n l  . . . . .  Am + e ' n , , )  c (9[e]/(e2). 

We have found it very convenient to use in such circumstances a symbolic 
short hand notation and simply write ' I ,  = (A + e. n)', neglecting all indices. 
In particular, it is useful to use the following Summation Convention: if {Xi} 
and { Y~} are two sets of  symbols parametrized by the same index set, then 
we let X .  Y = Y'. Xi �9 Yi. For example, for the map f f  | t~z ~ f~l | (gr. of  
the complex (2) we will simply write a ~-~ a .  dA,  etc. We will usually make 
use of  this convention without any further comment. 

As we will discuss obstruction theory, it seems appropriate to recall in what 
sense T2(1;) should be considered as an obstruction space for deformations 
of  1; (c.f. [20]). Let Zs be a flat deformation of  1;, described by an ideal 
(As) c •/s. Let furthermore be given a relation r E 9r Consider a 'small 
surjection' of  rings S' --, S, i.e. suppose we are given an exact sequence of  the 
form: 

0 , V  , S '  , S  , 0  (5) 

where V is an ideal in S r with the property V �9 ms, = 0. In this situation V 
becomes an S-module, in fact a module over C = S / m s .  Lift As to some As, 
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and r to a relation rs between the As and then to some rs,. The quantity 
rs," As, can be seen to be in V|162 and gives rise to a homomorphism 

~ V| ; r ~ rs, �9 As,. This in turn determines a well-defined element 
ob(Es) 6 V|162 whose vanishing is equivalent to the extendability of  2s 
to a Es,, fiat over S'. The different possible choices for Es, form a principal 
homogeneous space over TI(E).  

B The Complex D(E , f )  Associated to an f c (9 there is a small complex 

D(f) 
D(f)  :0  .......... , 0  , (9 , 0  

0 ,  , O(f) (6) 

that describes the deformation theory of  f ,  i.e. its cohomology groups T~ = 
{0 E | I 0(f) = 0} and T l ( f )  = (9/J(f) have the interpretation of  vector 
fields along the fibres of  f and of  infinitesimal deformations of  f ,  respectively. 
The deformations of  Y~ are described by the complex D(Z). In the case that 
f 6 f I we will construct a complex D(Z, f )  that describes in a similar way 
the infinitesimal admissible deformations of Z and f .  In order to do so, we 
have to reformulate the condition ' f  ~ f 1' in a slightly different way. 

Consider the space p l of  1-jets of  functions, i.e. p1 = (9 ~ ~ 1  On p l we 
consider the two following (9-module structures: 

From the left: 

From the right: 

There is a natural map 

which is 6~-linear for the left action. 

g" (f ,~o) = (g . f , g . g o  + f . dg )  

(f, ~o).g = ( f .  g, co.g) 

f ~ (f, d f) 

Furthermore, there is an obvious exact sequence 

0 ~PI |  ~ P1 | (gz - -~  O. 

By composition we get a map 

j ~ : ( 9  ~ P l |  z .  

Clearly one has 
f I  =- Ker(j~ :(9 ~ p1 | 

as saying that f E f I is really the same thing as saying j l ( f )  ~ p l  | 1. 
Associated to such an f there is an important map 

(7) 

(8) 

Evf :N~ ..... ~ p l |  

n : - -  (id | n ) ( f ( f ) )  
(9) 
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where as before N~ = Hom~(I / l  2, ~Oz). 
For an element f �9 f I  we will write: 

f = ~ . A  = Y'.~i "Ai 
(lo) 

d f  =cz)" A = ~ "  coi" Ai 

This representation defines a map 

(~ ,co) :~v  , p l |  
(11) 

e / ,  ' (~i, co,) 

which on N~ c ,!~ v coincides with the natural evaluation map Evf of (9). 
Note that these maps (9) and (11) are (.0-linear for the right action on pX. 

The maps (7) and (11) can be used to amalgamete the complexes D(f) 
and D(E) into one diagram. 

Diagram 2.3. 

(9 , Pl  | (9~- 

1 t 
| ...... , ~ v  , ( ~ / ~ o F  

All maps have been defined before, and the zero's that are supposed to be all 
around the diagram are suppressed. 

Lemma 2.4. i) Diagram 2.3 is commutative. 

ii) The map from the bottom row to the top row depends, up to a homotopy, 
only on f and Z and not on the representation chosen in (10). 

Proof The commutativity follows from the identities, obtained from (10) by 
letting act a vector field 9 : 

Off) = 0(~)- A + ~- 0(A) 

doff)  = ~,~(co) �9 A + co. 0(A) 

where s is the Lie-derivative. The uniqueness up to homotopy is a different 
way of saying that the map Evf of (9) intrinsically only depends on Z and 

f .  [] 

Definition 2.5. i) The complex D(E,f)  is the associated single complex of 
the double complex 2.3 

D(E, f ) :  0 -- - ' ,  | 

Oi 

, (~ r  

> (off), 0(A)) 

(g ,n)  , 

o p1 > | Om r ( ~ / ~ o )  v ~ 0 

> (g --or" n, dg - c o .  n,(r~-~ r .  n)) 
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ii) d := Ker(~) is called the space of admissible pairs. 

iii) P ( ~ )  c (9 is called the space of admissible functions, where P : ~ ~ (9, 
the canonical projection to the first factor. 

iv) The cohomology groups of D(Z, f )  are denoted by T i ( Z , f ) ,  i = 0, 1,2. 

Proposition 2.6. The complex D(Y,f)  describes the infinitesimal admissible de- 
formations, i.e.: 

T~ = {,9 E O [ ~(f) = 0, $(I) c I} ,  infinitesimal automorphisms. 

Tl (Y~, f) = Def  (E, f)(IE[e]/ (e2)) , infinitesimal admissible deformations. 

T2(E, f )  = obstruction space. 

Proof. The statement about T~ f )  is obvious; the vector fields 9 that kill f 
and preserve Y are precisely the infinitesimal automorphisms of  the diagram 
E --* f (see 1.C). An element of  T l(Z, f )  is represented by an admissible pair 
(g, n) ~ ~r c (9 (9 Nz, which just means that we can find ~1, o21 such that 
g -- ct- n = ctl �9 A, dg - ~o �9 n = (D 1 " A. As then 

f+eg=(~+e.oq)(A+e.n)mode 2 and 

d( f  + e- g) = (co + e. col)(A + e. n) mod e 2 , 

we see that the pair (g, n) defines an admissible deformation of  (Y,,f) over 
~E[e]/(e2). As to the obstruction theory the following: Assume that we have a 
small surjection as in (5) and an admissible deformation ~s ~ Def(E,f) (S) ,  
represented by Ys described by Is = (As) c (9/s, and f s  E (9/s. Then, 
because f s  ~ fs  Is ,  the relative integral of  Is,  we can write, as in (10) : 

f s  = Ors" As 

ds f s = 02s" As 

(where ds, of course, is the relative exterior derivative). Let also be given a 
relation r ~ ~ ,  lifted to a relation rs between the As. Now lift f s ,  as, COs, 
As and rs in an arbitrary way to f s ' ,  as,, 02s', As, and rs, and consider the 
element 

Os, := (fs' - ~Xs, " As,, ds,fs, - 02s" As,, (r ~-* rs, " As,)). 

Because the family is admissible over S, we get 

Os, ~- V| 1 | (gr. (9 (~//~0)v). 

It is straight forward to check that the class Ob(r of  Os, in V|162 
is independent of  the choice for f s ' ,  etc. Furthermore, Ob(r is zero if and 
only if ~s can be lifted to an element r c Def(E,f)(S ')  and the choices for 
is '  form a principal homogeneous space over T l ( E , f ) .  We call the element 
Ob(~s) the obstruction element of  the family ~s. [] 
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Variation 2.7. Corresponding to the functors Def(Z, X), M(Z, f)  and M(E, X) 
of 1.C there are complexes D(Y~, X), M(Z, f)  and M(Z, X). These are obtained 
by replacing the complex D(f) in diagram 2.3 by the following: 

D(Z,X) D(f) | C/ if)  (= D(X)) 

For M(Z,f )  replace D(f) by D(f) | 0/12 

M(E, X) D(f) | O/if ,  12) 

The cohomology groups of these complexes have interpretations similar to 
those of D(Z,f)  in 2.6. It is clear from the construction that the first 
cohomology groups of these complexes are quotients of T1(E,f) and that the 
second cohomology groups are all equal to T2(y.,f). 

Using the complex D(Z,f) ,  it is easy to compare infinitesimal admissible 
deformations with the deformations of Y and of f .  Projecting the double 
complex 2.3 vertically and horizontally we get, respectively, maps D(E,f)  
D(Z) and D(Y.,f) --* D(f) ,  corresponding to the forgetful transformations 
Def(Z,f)  ~ Def(Y,) and Def(Z,f)  ~ Def(f).  This leads to two exact 
sequences. 

Proposition 2.8. There are exact sequences 

A. 

0 , K ~ , T~ > T~ , 
, K 1 , TI(y,,f) , TI(z) , 

> ~1 , T2(Z,f) , T2(y,) ,0  

where K ~ = {0 E I .  | ] 9(f) = O} and K l = f I / I .  J ( f ) .  

B. 
0 , T~ , T~ , 

, L l , T I (z , f )  , Ti f f )  .~ 

, L 2 , T2 (E , f )  , 0 

where L 1 = Ker(Evf) and L 2 ~ Coker(Evf) @ T2(Z).  

Proof. The kernel complex of map D(Z,f)  ~ D(E) is the complex 

K : 0  , I ' |  ~(_9 , P I |  ~0 

with the obvious maps. One has f I = Ker(j~) and f ~  = Coker(j~). Sequence 
A. is just the long homology sequence associated to 

0 , K , D(Z,f)  ----+ D(Y~) , O. 

Similarly, the kernel complex of the map D(E,f)  --o D(f) is the complex 

L : 0 ~ 0 ~ o~v ~ p1 | Cz @ (~ /~0)  v ~ 0 

and gives rise to the sequence B. The homology groups are seen to be 
L 1 = Ker(Evf) and L 2 ~ Coker(Evf) (9 T2(Z). [] 
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Remark 2.9. The most interesting map in the sequence A. of  2.8 is the map 

wf : TI(E) , f2~ 

n ~ - - * d ( o ~ . n ) - o . n  

which, upon varying f E f I gives rise to a bilinear map 

W : f I / I  2 x Tt(X)  .... ,nix 
(12) 

(f, n) ; , wf (n) 

The kernel Ker(wf) can be interpreted as those infinitesimal deformations of  
Z for which f can be lifted in an admissible way, whereas W can be seen as 
the (non-trivial part of  the) first order obstruction map 

T l (Z , f )  x Tl(X,f)  ....... , T2(X,f) 

for a function f E 12. 
From A. we get sequences: 

0 ......... , f I / J z ( f )  , T l (X, f ) - - -*Ker(wf)  , 0  

0 ~ Coker(wf) , Tz(E, f )  - - *  T2(E) , 0  

where Jz ( f )  = {~9(f) l ~9(I) = I}. 
(For Def(X,X),  M(E, f ) ,  M(Z,X) ,  replace Jx(f)  by (f, Jz ( f ) ) ,  (lZ, Jx(f)) ,  

( f  , 12, Jz (f)) respectively.) 
Note also that, essentially due to the two different O-module structures 

on p l  used in Z3, the groups Tl (E , f )  and TZ(X, f )  do not have a natural 
(9-module structure in general; the map wf is not (9-linear. Furthermore, the 
group T2(X,f) is usually infinite dimensional over ~ .  In 3 we will see how 
under some extra conditions on Z we can define a smaller complex H(Z , f )  
not suffering from these defects. 

Proposition 2.10. Assume that the following conditions hold for X and f E 
f I .  

i) E is Cohen-Macaulay. 

ii) dim Supp( I /J ( f ) )  < dim E. 

Then: 

* The group L 1 of  2.8 B. is zero, i.e. T~ = T~ and T1(E,f)  = 

, s (f) = J ' I  n J ( f ) .  

Proof Exactly as in the proof  of  1.11 one shows that under the conditions 
of  the proposition the space E is determined canonically by f .  So every 
infinitesimal automorphism of f preserves Z and Tl (E , f )  injects in T 1 (f). 
This proves the first statement. As then f I / d x ( f )  c Tl(X,f)  has to inject 
into T t ( f )  = (9/J(f) ,  one finds the second statement. 
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When we are given an admissible pair (Es,fs) over a base S, we can 
similarly define a complex D(Es,fs/S) ; one has just to replace all terms in 
the diagram 2.3 by their corresponding relative terms 'over S'  (so replace 
| by |162215 the relative vector fields, etc.) The cohomology groups of  
the complex D(Es,fs/S) are S-modules and we will denote by Ti(Es,fs)rel, 
i = 0, i, 2. They have an interpretation similar to the one given in proposition 
2.6, but now with respect to the relative deformation functor Def(Es,fs) as 
in remark t.5. 

Proposition 2.11. Consider a one-parameter admissible deformation (Eo,fo) of 
(E, f )  over a small disc with parameter t. Then there is an exact sequence of  
the form: 

0 ..... ; T~ t .  T0(Eo,fo)rel ' T~ ' 
1 t. 

~o~ T (EO, fD)rel Tl(Eo, fl))ret ' T t (E , f )  ' 

..... , T2(Eo,fo)r~l t .  T2(Eo,ft))re 1 .~ T2(E,f  ) 

where t. is multiplication by the local parameter t. 

Proof. All terms in the complex D(Xo,fo/D) are fiat over the t-parameter and 
compatible with restriction (except for the term (:~o/N%)v). The proposition 
now follows from taking cohomology of the sequence 

0 , D(Eo,fo) , D(Zo,fo) , D(Z, f ) .  

[] 

3 Special Conditions on E 

In 2.B we introduced the complex D(E,f)  and defined groups T~ 
Tl (E, f )  and T2(E,f) as cohomology groups of this complex. These groups 
had the interpretation of  infinitesimal automorphisms, infinitesimal admissible 
deformations and obstruction space of the pair (E, f ) ,  respectively. This is as 
much as one can say in general. In 3.A we will make additional assumptions 
on E. We construct a smaller complex H(E, f)  and show that the obstructions 
lie in a subspace H2(E,f) of T2(y~,f). We conclude with 3.B were we give 
some examples and applications of the theory of admissible deformations. 

A The Complex H(Y., f )  We begin with another characterization of f I in 
case of reduced Z. 

Proposition 3.1. Assume that E is reduced. Then the map 

ev : I ........ ~ N~ := Homz(Nz, (gz) 

f -~ evf : Nz ...... ; (9x 

n .  , n ( f )  = n 

has as kernel exactly f I. 
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Proof Look at the exact sequence (4) 
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0 >Oz ' ~ O |  ''~Nz -~Tt(Z) >0. 

As Z is assumed to be reduced, the module T I(Z) is torsion, so 
Homz(Tl(E),Cz) - 0 .  So taking Homz(- ,Oz)  of the above sequence we 
get an inclusion 

j . Nz ~ , ~1 | Oy. ; q)~ ~. dxi  | (p(c~/t;3xi) 
i=0 

expressing that a homomorphism q3 : Nz ~ Oz is determined by its restriction 
to the image of | | Oz. But for ~ 6 | evf(~) = ~9(f) and to say that this is 
zero in Oz is the same as saying that f E f I .  [] 

Remark 3.2. The map ev : I ~ N~ descends to a map 

6 : 1/12 , N~ = Homz(Homz(l / I2 ,0z) ,Oz)  

which is of course nothing else than the double duality map. So if I is 
reduced, we have f 1/12 = Ker(6), We will put furthermore: 

N*/I := Coker(6). 

This group will play a role in the sequel. Recall that in general the kernel and 
the cokernel of the double duality map on an 0~,-module M can be identified 
with ga~g~(O(M), Oz) and gxg2(D(M), 0z) respectively, where D(M) denotes 
the Auslander dual of M, that is to say, the dual of the second syzygy module 
of M. When Z is Cohen-Macaulay of codimension two, then it is easy to see 
that D(1/12) ~ o~:c, where ~oz is the dualizing module of E (see e.g. [4]). So 
if E is reduced and Cohen-Macaulay of codimension two, then 

f 1/12 = gxl~(coz, Oz) ; 

N "  / 1  --- e o z )  . 

This is sometimes useful. 

Remark 3.3. We mentioned that in general T1 (Y+, f)  will be just a vector space, 
and will not have a natural structure of an O-module. However, in the case 
that E is reduced, or rather when the map evf is the zero map, the theory of 
admissible deformations becomes essentially O-linear. 

We have: 

Lemma. Assume that ev/ is the zero map. Then: 

i) the space ~t of  admissible pairs and Tt(E, f )  are O-modules. 
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ii) the space P(~r of  admissible functions ~ 0 is an ideal. Furthermore, 
P(~r ~ 1. 

iii) the form W : f I / I  2 • Tl(X) --) ~ is O-bilinear. 

Proof The space ~r o f  admissible pairs of  2.5 was 

d = {(g,n) E ~0~N~: [ 3~1,o91 such that g - ~ - n  = a l 'A,  dg-~o,n = ~ol-A}. 

If  the map evf is the zero map, then one has a .  n 6 1 for all n 6 Nr.. So one 
gets that (g, n) E ,~ =~ g E I .  One checks easily that for 2 E 0 and (g, n) E d 
one has (2- g ,2 .  n) E ~r i.e. ~r is an O-module and so also T l (Z , f ) .  The 
map W : f l / I  2 x TI(Z) ~ f ~  ; n~--~ d(a-n)  - o ~  -n of  2.9 reduces simply to 
the map -co : TI(Z) ~ f ~  ; n ~ - a J -  n, which is 0-linear. [] 

The importance of  3.1 lies also in the fact that this characterization of  f I 
carries over to the relative situation. 

Proposition 3,4. Let Z be reduced and Zs a flat deformation of  Z over S. Let 
Zs be described by an ideal Is. Then the kernel of the map 

evs : Is , N~s = Hom~:s(Nzs,Oz s) 

f s ~' ~ evss : Nzs ........ > C0zs 

ns~---~ns(fs) (=as 'ns)  

is exactly the relative integral fs Is of  1.I3. 

Proof The proof  runs the same as in 3.1. One uses the sequence defining the 
relative T1(Y.s/S). One has to use the fact that 

Homz(Tt(Es/S) | Oz, Ox) = 0 

(which is the case because Z is reduced) implies that 

Homz~ (Tt (Zs/S), s = O, 

which then gives that a homomorphism ~0s : N~s ~ d)Zs is determined by its 
values on the relative vector fields. [] 

We use this different characterization of  admissibility to construct a new 
complex with much smaller obstruction space than T2(Z, f ) .  For this to work 
we need another condition on Z, namely that the obstruction space T2(Z) is 
zero. 

Proposition 3,5. Let Z be reduced, T2(~) = 0 and let f C f I. Then: 
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i) The complex D(E, f )  is quasi-isomorphic to the associated single complex 
of  the following double complex. 

I ~ f~l | (9x 

(13) 

Here the map I --. f~l | (gx is given by g ~ dg and the map Nz ~ f~l | Ox 
by n ~ - ~ o . n .  

ii) The normal bundle is flat and compatible with restriction under flat de- 
formations of  Z, i.e. i f  

0 , V  , S '  ~S ~0 

is a small surjection (5), and Zs, a fiat deformation of  Z over S' then one has 
an exact sequence: 

0 ~.V| 'Nxs, ~Nzs , 0 ;  V | 1 7 4 1 6 2  

Proof For statement i), note that this double complex is just a sub-complex 
of  the full complex 2.5. Because we assume Tz(Y,) = 0, this inclusion map 
of  complexes induces an isomorphism of  cohomology groups. For statement 
ii) one does not need E reduced. As Tz(Y~) is the obstruction space, it 
follows that one can extend any given (even embedded) deformation of  Z 
over S' x S[8]/(8 2) to S'[e]/(e2). This means that Nz s, --~ Nzs. As statement 
ii) should be well-known anyhow, we omit further details. [] 

The top row in the double complex (13) is the map 

I ~ f~l | (gx ; gl ~dg. 

We have seen that if g is reduced, this map can be factored as 

I e v  . J ~I  N x ' , | (.9. 

So what we would like to do is to replace f~l | (gz in the complex by N~:. 
For this one would need a map from Nz to N~. 

Definition 3.6. Let f ~ (9 such that evy = 0, and assume that T2(Y.) = 0. 
The Hessian 

H : N x x N x  ,6% 

is a symmetric bilinear form defined by the following four steps. 

i) Let n and m c Nz. This means that for all r c ~ we can solve 
r . n + s(n) . A = 0 and r . m + s(m) . A = 0 for s(n) and s(m). (Of course, s(n) 
and s(m) depend also on r C #L) 
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ii) Recall that there is, in general, a pairing T~ x Tx ~ ~ T 2 . The vanishing 
of this pairing between (the classes of) n and m just means that one can find 
a p and t such that for all r c ~ one has: 

r . p + s(n) . m + s(m) . n + t . A = O ,. 

In particular if T2(E) = 0 (as we assumed) this applies. 

iii) Because the map ev/ is the zero map, one can solve the equations 
~- n + y(n)" A = 0 and ~. m + ~,(m) - A = 0 for 7(n) and ~'(m). 

iv) Put H(n,m) := - ( ~  -p + 7(n) -m + 7(m)" n). 

Proposition 3.7. The Hessian f o rm  H has the fol lowing properties: 

i) H : N~ x N z  ~ d)x is well-defined, i.e. it does not depend on the choices 

made in the above steps. 

ii) For 0 E | one has H(n, ~(A)) = O A w. n. 

iii) For O1 and ~2 E 6) one has H(~I(A),02(A))= ~1(02(f)). 

iv) By transposition we get a map h : N z  -~ N~.  The composition 

Nz h} * ~ f~l Nz ~ | ~x 

is equal to the map ca : N z  ~ f~l | Oz in (13). 

v) I f  f ~ i2, f = (h- A). A f o r  some matrix  h, then H(n, m) = 2. (h- n)- m. 

Proof. Statement i) follows by a straightforward check. For example, given 
f ,  then the difference 6~ of  two choices of  ~ is ~ ~ .  This 6~ induces 6y's 
such that 6~. n + 67(n) �9 A = 0 and c~- m + 67(m) �9 A = 0. Then the induced 
change 6H in H is given by 

6~.  p + 6~(n) �9 m + 6y(m) �9 n. 

But by the definition of  p this quantity is in the ideal I ,  hence H in Cgz 
is independent of  the choice of ~. Statement ii) can be seen as follows: by 
differentiating the relations r .  A -- 0 and r �9 n § s(n) �9 A = 0 with respect to 

E 6) we get the expressions 

r-  O(A) + ~(r).  A = 0 and 

r . O(n) § s(n) " ~(A) + ~(r) . n + ~(s(n)) . A = O. 

Hence 9(n) can be taken as the p of n and 0(A). From g .  A = f we get 
y(~(A)) = 9(~)-9_lca. Making the substitutions and using O(~.n +7(n).A) = 0 
we get ii). Statement iii) follows from ii) and expresses the fact that H is an 
extension of  the second derivate of  f from vector fields to normal vectors. 
Statement iv) is just another way to express ii). Statement v) follows by direct 
calculation. [] 



A Deformation Theory for Non-Isolated Singularities 199 

Corollary 3.8. i) The following diagram is commutative: 

I , Ny. 

I I 
0 " N~. 

ii) The natural mapping from (13) to (14), induced by identity mappings and 
the inclusion j : N~ ~ ~1 | (p~ is a mapping of  double complexes. 

Proof. Statement i) follows from ii). Statement ii) is just property 3.7 iv). [] 

Definition 3.9. We define the complex H(E,f )  to be the associated single 
complex of the double complex (3) : 

n ( Z , f )  :0 , O  , I ~ N ~  ----oN~ , 0  

~,  , Of f ) ,~ (A) )  

(g, n) i ~ eVg -- h(n) 

We denote the cohomology groups of  H(E,f )  by Hi(E,f) ,  i = 0, 1,2. 

Proposition 3.10. i) The inclusion map H(Z,f )  -* D(E,f )  induces 

H~ = T~  

H I ( Y , f )  = T~(E,f) 
HE(~,f)=N'H +h(N~)~ , T2(E,f) = f~:/w(T~(Y.)) 

ii) The obstructions for extending admissible deformations lie in the sub-group 
H2(E,f).  

Proof. Statement i) is immediate, because the quotient complex has only a 
term in degree 2. For statement ii) we consider a small surjection (5) : 

0 ~ V ~ S' ~ S , 0. 

Assume that we have an admissible deformation of (E, f )  over S, given by 
Es and f s .  We construct an element in V | N~ that maps under (id | j) to 
Ob(Es,fs) ~ V|162 So let be given an element n ~ N~, and lift n to 
ns E N~ s, which is possible by 3.5 ii). By 3.4 we know that the evaluation 
map 

eVfs : N~ s ...... ~ (_9~s 

is the zero map. This means that for all ns ~ Nzs we can find ~s = ~s(ns) 
such that the following holds: 

~s "ns + ?s "As = O. 
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Now lift Es to a Es,, defined by (As,) and take arbitrary lifts of C~s to COs, 
and lifts of Vs to Ys,. Furthermore, lift ns to ns, E N~ s, as is possible by 3.5 
ii). Now consider the quantity: 

hs, := as, �9 ns, + Ys' "As,. 

As hs, restricted to S is zero, it is in V|162 It is straightforward to check 
that a choice of as,, Vs' and As, thus gives rise to a homomorphism 

H : Nr~ ----* V| 

n ~ ~. hs, 

and that it maps to Ob(Es , f s ) .  [] 

Remark 3.11. We can use the double complex representation (14) of  the 
complex H(E, f )  to derive exact sequences of  the type 2.8 A. and B. We only 
state the result under the conditions of proposition 2.10: 

Proposition. Let E be reduced, Cohen-Macaulay, T2(E) = O. Let f E f I such 
that dim(l  / J ( f ) )  < dim(E). Then there are exact sequences: 

0---, f I / f  I n S ff) ~ T~(E, f)  -* T~(E) - *  N * / I  ~ HE(E, f)  --~ 0 
n ~ h(n) 

(15) 

0 --~ T l ( E , f )  ~ I / J ( f )  --~ N~/h/(Nr.) --~ H2(E, f )  --~ 0 
(16) 

g ~ eVg 

For a function f ~ 12 the map TI(Z) ~ N ' / I  is the zero map, and the 
obstruction space H2(E,f)  reduces to N*/ I .  

We see that if the Jacobi-number j ( f )  := dimr < 0% then also 
dima: T I(E, f )  < oo. Furthermore, the extended I-codimension 

C e , l f f )  : =  d i m r  l /  f I n J( f ) )  

then also is finite. The numbers j ( f )  and ce.t(f) were introduced in [16]. If  
d i m r  and dim,r:(N'/h(N)) are also finite dimensional, one can obtain 
from (15) and (16) the following useful formula: 

j ( f )  - (Ce, l ( f )  "~- dime(Zl(E)))  = dimr - d imr  (17) 

B Examples and Applications The simplest example where the functor of  
admissible deformations has an interesting base space seems to be the follow- 
ing. 

Example 3.12. Let E be the zero-dimensional double point, defined by the 
ideal I = (A), A = x 2 ~ O = IE{x}. For E one has: 

f i / i  2 = ( x 3 ) / ( x 4 )  . ~-~1 ~ .  ( ~ / ( x ) )  . d x  ; z l ( ~ )  = ~ / ( x )  
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so all these spaces are one-dimensional. 
Consider the function f = x 3 E f I .  In the representation (10) we can 

take ~ = x and e) = 3" dx  and the IE-linear map wf : TI(E) ~ f l l  of  
2.9 is given by: 1 ~ d ( x ' l ) - 3 d x ' l  = - 2 d x ,  so it is an isomorphism. 
From the exact sequence of 2.9 one gets that T I ( Z , f )  = f I /Jzc(f) .  Because 
Jz( f )  is generated by xOx(x 3) one sees that T I ( E , f )  = 0. On the other hand 
we can consider the function f = x 4. In this case the map wf is the zero 
map and f I /Jr . ( f )  is one-dimensional, generated by the class of  x 3 and thus 
T l (X, f )  is two-dimensional. A semi-universal deformation to first order is 
easily written down: 

Y~e,b : Ie,b = (Ae,b), Ae,b = X2 -Jr e E ll2[e,b]x/m 2 

fe,b = ( x2 + bx + e)" (x 2 + e) e II;[e, b l x / m  2 , 

where m = (e, b). 
Here dfe,b = (4x + 3b)dx �9 (x 2 + e) mod m 2 and the obstruction element 

associated to the small surjection: 

0 , m2/m 3 , r  3 , r  2 ~ 0 

is equal to d f e,b -- (4x + 3b)dx(x 2 + e) = e . b �9 dx ,  considered as an element 
of  (m2/m 3) | f ~ .  Hence, to extend the family to second order, we have to 
divide out e .  b, and get a family over ~[e,b]/(ma,  e �9 b). One easily checks 
that the family as written down in fact is admissible over II~[e, b]/(e, b), so the 
base space of the semi-universal admissible deformation in this case consists 
of  two intersecting lines. 

Examples 3.13. We now turn our attention to functions f E IE{x,y ,z}  with 
a one-dimensional critical space c#. We let E = elf  r e  d be the reduced critical 
locus of  f .  In general E will be a a space curve with an isolated singular 
point. (Note that such E is a Cohen-Macaulay codimension two germ.) Then 
the following statements are equivalent, as is easily checked by looking at a 
general point of  E : 

1) d imr  < oo. 

2) d i m r  < oo. 

3) d i m r  < oo. 

4) f has exactly Z as critical locus, and transverse to a general point of  
E an A1-singularity. 

(5) The surface germ X in 1123 defined by the equation f = 0 is weakly 
normal. ) 

Under these circumstances we have T I ( z , f )  = P ( d ) / J ( f )  ~ I / J ( f ) ,  
where P (~') is the ideal of  admissible functions. 

�9 When X is smooth (defined by the ideal I = (y,z))  f is called a line 
singularity (see [21]). Some examples: 
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1) Am : f ---- y2 + Z2. Here I / J ( f )  = 0, so T l (Z , f )  = 0. 

2) Doo : f = x y  2 n t- z 2 .  Here 1/J(f)  is one-dimensional, but an easy 
calculation shows that Tl(E, f )  = O. 

3) f = xyz + y3 + z 3. Here P(~r = (xy, xz, y2,yz, z 2) and TI(Y.,f) is 
two-dimensional. 

* Next in complication is the case where Z is a complete intersection 
(see [16]). Then one has: f l  = 12 and for every f ~ f I  one has that 
the obstruction space H2(Z,f)  = N ' / I  = 0. Hence the base space of  the 
semi-universal admissible deformation is smooth. 

* The simplest curve X that is not a complete intersection is the union of 
three lines through the origin (described by the ideal 1 = (yz, zx, xy)). The 
simplest function f having this as singular locus is: 

4) T~,~,~ : f = xyz. Here again we have that I / J ( f )  = 0 and so 
T 1 (y., f )  is equal to zero. 

The examples 1,3 and 4 are rigid for our deformation theory. We do not 
know of any other rigid example: 

Conjecture 3.14. Let f : (~3  ~ (~ be a germ of  a function with a one- 
dimensional reduced singular locus E. The T l(Z, f)  is only zero if f is right 
equivalent to the A~, Do or T~,~,~-singularity. 

Example 3.15. The following beautiful example is due to PELLIKA~ (see [16] 
7.22) and aroused our interest in the subject: 

f = (yz) 2 + (zx) 2 + (xy) 2 

and E as in example 3.13 4) described by I = (yz, zx, xy). 
Because f E /2, the map wf �9 T~ ~ C~ is the zero map. The normal 

bundle Nz is generated by the following vectors: 

(y,0,0), (z,0,0), (O,x,0), (O,z,0), (o,o,x), (0,O,y). 

A calculation shows that: 

P ( d )  = (y2z, yz2,zZx, zxZ, x2y, xy2,xyz) and 

(f, d(f)) = (xy 2 + xz 2, x2z + y2z, x2y + zZy). 

Hence dim TI(Z,f)  = 7, with as basis: 

{3xyz, 2(y2z - yz2), 2(x2z - xz2), 2(x2y - xy2) ,  2x2yz, 2xy2z, 2xyz2}. 

Because wf : TI(Y~) ~ f ~  is the zero map and T2(Z) = 0, the obstruction 
space T2(Z,f)  is f~l s. (In this example H2(y~,f) c T2(Z,f)  is just the 
three-dimensional space of  torsion differentials.) 

The semi-universal deformation to first order is described by the following 
data: 
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a) the deformed curve: A1 = A + ~ = a t i ' n i ,  where A = 
nl = (y - -  z, O, O) ; n2 = (O,z - - x , O ) ;  n3 = ( O , O , x - - y ) .  

b) the deformed a's: al = hi �9 hq + to" ( x , y , z ) ,  where 

hi = t4  1 t 6  . 

t5 t6 1 
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(yz ,  z x ,  xy )  ; 

c) the deformed f is f l  = ~q "Al (mod m2). 

d) the deformed co = d~ + hi �9 dA + 2t0" (dx ,  dy ,  d z ) .  

The family is admissible over C[to, tl . . . . .  t6]/m ~, where m = (to . . . . .  t6). 

The curve is not obstructed, and a lift to second order is given by: 

3 

As = A1 + Z ti" t j ( l ,  1, 1). 
i,~j 

The obstruction element in f ~  | (m2/m 3) is 

3 3 

to. (x ,y ,z ) .  d()--~ t , -n,)  - 2t0 . (dx,  dy,  dz)  . ( ~  ti " n3 .  
i=1 i=1 

Becuse in f ~  we have the relation 

(y + z ) d x  + x d ( y  + z) = d ( x y  + x z )  = 0, 

we can rewrite this expression as: 

3toq �9 Wl + 3tot2 �9 w2 + 3tot3 �9 w3 E Tors(f~ 1) | (m2/m3), 

where 

wl = x . d ( y  - -  z)  ; W2 ~--- y "  d ( z  - -  X) ; W4 = Z" d ( x  --  y ) .  

Hence the equations for the base space of a semi-universal deformation to 
second order are given by: 

totl = O ; tot2 = O ; tot3 = O. 

A lift of f to second order is given by 

f2 = (hi �9 A2)' A2 + t o ( x , y , z ) .  A 2 

and one can check that this family, as it stands, defines an admissible family to 
every order, and therefore describes the semi-universal admissible deformation 
of f .  Remark that the base space has two irreducible components. 
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Application 3.16. The relation between the number of D~-singularities ap- 
pearing in a generic (admissible) perturbation of f and the Hessian was first 
noticed by SIERSMA ([21] 4.1) in case of  smooth E. This was generalized to the 
case that E is a complete intersection by PELLIKaaN [16]. The point in these 
cases is the following: One has f I  = 12, so one can write f = y 'hqAi .Aj .  
This matrix h = (hij) can be interpreted as giving a map hf : Nz ~ 1/12. For 
a complete intersection the conormal module 1/12 is locally free, and so its 
dual Nz also is. This then gives that the dimension of the cokernel of  hf is 
constant under deformation. In [17] PELLII~AN generalized this to so-called 
syzygetic curves Z (that is, T2(Z) = 0), f ~ 12 and admissible deformations 
such that f stays in 12. The condition on T2(E) makes that I / I  2 behaves well 
under deformation. Example 3.15 shows that a singularity can have different 
components in the base space of  the semi-universal admissible deformation 
and that on different components the number of Doo-points appearing in 
a fibre can be different. However, in [9] the first author introduced for a 
general hypersurface singularity f ,  with a curve as reduced critical locus an 
invariant VD~(f), called the virtual number of  D~-points. This number has 
the following properties: 

1) VDoo(f) is constant under all admissible deformations of  Z and f .  

2) VD~(D~)= 1 and VD~(Too,~,~)=-2. 

In case that E is smoothable and T2(T~) = 0, VD~(f) can be defined as 
follows: 

VDoo(f) = dimr176 --, T~ -- dime TI(Z).  (18) 

From the exact sequence 2.8 A. and 2.10 it follows readily that this cokernel 
is equal to the following 

Coker(T~ ~ T~ ~ f I n J( f ) / I  . J(f) .  (19) 

In 3.6 we defined for f ~ f I a Hessian H : N~ | N~ ~ C~ and the question 
arises in what sense H is related to VD~. 

Theorem. Let Z be a reduced, smoothable curve and assume that T2(E) = 
T2(E) = 0. Let f E f I such that dimr < o0. Define the Hessian- 
number h(f) of f as: 

h(f) := dimr /h(Nx) ) - dimr / I) + d imr  1/12). 

Then: 

a) h(f) is constant under any admissible deformation ZV, fT of E and f . 
(i.e. the function t ~ ~pefT~(o) h(f t, p) is constant.) 

b) h(f)= VDoD(f). 
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Comment. Of course, statement b) implies statement a), by [9]. We have given 
a proof of b) in [10] using globalization. On the other hand, it is not difficult 
to give a direct proof of a) along the lines of the proof in [17]. When we add 
d i m r  2) to both sides of formula (17) we get: 

h(f) = j ( f )  - Ced(f) + dimr  1/12) - dimr (20) 

The right hand side of (20) can be rearranged, using (18) and (19), to: 

h(f) = VD~( f )  + ( j ( f )  - dimr �9 J ( f ) ) ) .  

So apparently statement b) is equivalent to: 

dimr / J ( f ) )  = dimr / l  �9 J( f ) )  . (21) 

We do not have a simple algebraic proof of equality (21), the only proof we 
know uses constancy under deformations of both terms. It is at this point 
that the condition T2(E) = 0 comes in. [] 

Application 3.17. In 3.16 we already remarked that PELLIKAAN essentially 
proved the foregoing theorem for f E 12 and admissible deformations of f 
such that ' f  stays in 12'. we shall make this now more precise and prove 
that the deformation of this type in fact always form a component of the base 
space of the semi-universal admissible deformation of f .  Let E be described 
by I = (Ab...,Am) and let f E 12 and write 

m 

f = ~., hi j" Ai" Aj .  
i , j = l  

Choose representatives gl, g2 . . . . .  gp for a basis of the vector space 12/12 MJ(f)  
and write these as 

m 

gk = ~_~ (19k i j  " Ai " Aj .  
i , j = l  

We assume that T2(~) = T2(E) = 0 and let S be the (smooth) base space of 
the semi-universal deformation of the curve E. Let Ai(s) be generators for 
the ideal of the curve Es, s E S. Consider the function 

F(Xo, X 1 . . . . .  Xn, t l , t  2 . . . .  ,tp, S)' ' ( hij-~ E tP" q)kij) " Ai(s) " Aj (s ) .  
i,j=l k = l  

Theorem. Assume that Y, is reduced, smoothable and T2(E) = T2(E) = 0. 
Let f E 12 and d imr  < 00. The above F describes an admissible 
deformation over a smooth space C of  dimension 

d imr  2 fq J( f ) )  + dime T I(E). 
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Then: 
C is a component of  the base space of  the semi-universal admissible deformation 
off. 

Proof For a general s E S, the curve Zs is smooth, and for general (t, s) E C 
the function Ft,s has only A~, D~ singularities on the zero level and some 
A1-singularities outside the zero level. (See [17] ex.2.3.) The theorem follows 
by a dimension count. By [13], the dimension of the component of the semi- 
universal admissible deformation is equal to this number of A1-points of Ft,s. 
Now the number of D~-points of Ft,s is equal to h(f), by the theorem of 
3.16. The right hand side of (20) can be rearranged to: 

h(f) = j ( f )  - dimr / I 2 r J(f))  -- dimr 1 (Z)). (22) 

PELLIKAAN proved that j ( f)  = •A 1 -~-#D~o (see [16], [17] or [18]), so (22) 
reduces to #A1 = dim C, i.e. C is a component. [] 

Corollary 3.18. Let Z be as in the theorem of 3.17. Then one has: 

dimr >_ dim~(f  1/12). 

Proof Consider an f E 12 with dimr < 0o as in 3.17. (That such 
an f always can he found is shown in [16].) The non-trivial part of the first 
order obstruction map 

TI (z , f )  x TI(Z,f )  , H2(Z,f) c T2(Z,f) 

is the bilinear form 

W : f I / I  2 x TI(E) , N ' / I  c f ~  

(12) of 2.9. The fact that C of 3.17 is a smooth component implies that 
all elements of f 1/12 have to be obstructed against some element of T I(z). 
Hence all elements of f 1/12 are obstructed against the general element r of 
TI(z) .  So the map 

W~ : f I / I  2 , N ' / I  ; g, , W(g,~) 

is injective. [] 

Remark 3.19. Note that space curve singularities Z are always smoothable 
and have Tz(Z) = T2(Z) = 0. (See 2.l and 2.2.) So the results of 3.16, 3.17 
and 3.18 apply in particular to such Z. For space curves E we have a purely 
algebraic proof of 3.18, based on the interpretation of f I / I  2 and N*/I  in 
terms of d~xg as mentioned in 3.2. In fact, simple examples suggest that a 
stronger inequality holds: 
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Question 3.20. Is it true that for space curve singularities the inequality 

dim•(N*/I) > 3 '  d imr  1/12) 

holds ? 

HUNEKE [8] has shown that for a space curve singularity the following holds: 

dim~z(f I / I  2) > (ts1) , 

where t denotes the Gorenstein type of s  i.e. the number of generators of 
the dualizing module COx. In particular, f l / l  2 is never zero if Y, is not 
a complete intersection. This implies that for f E 12, s not a complete 
intersection, the base space of the semi-universal admissible deformation has 
at least two components. 

The first interesting class of space singularities are those of multiplicity 
three. In [12] these curves appear as double loci of  projections into ~3 of ra- 
tional surface singularities in ~5. Using the theory of admissible deformations 
we were able to determine the base space of the semi-universal deformation 
for such singularities. 
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