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ON THE DEFORMATION THEORY
OF RATIONAL SURFACE SINGULARITIES
WITH REDUCED FUNDAMENTAL CYCLE

T. DE JONG AND D. VAN STRATEN

Abstract

In this paper we study the deformation theory of rational surface singu-
larities with reduced fundamental cycle. Generators for T! and T? are
determined, the obstruction map identified, and an algorithm to find a
versal family, starting from a resolution graph, is described.

Iniroduction

For a germ of an analytic space X with an isolated singular point the
existence of a semi-universal (or versal) deformation X5 — & of X
has been proved by Schlessinger [Schil] in the formal, and by Grauert
[Gra] in the analytic case. We call 4. the base space of a semi-universal
deformation of X, or, as it is unique up to (nonunigue) isomorphism,
the base space of X, for short. The Zariski-tangent space to & can
be naturally identified with the vector space T; = Def(X)(T), where
T = Spec(Cfe]l/ (82)) and Def denotes the deformation functor. The space
& is smooth if the obstruction space T; is zero. This happens for in-
stance if X is a complete intersection, or if X is Cohen-Macaulay of
codimension two. In these cases it is therefore relatively easy to compute
a versal deformation of X . In general, however, & can be very compli-
cated. It can have many singular components, intersecting in a complicated
way.

Although obstruction calculus (see e.g. [Laud]) can be used to compute
a versal deformation to every order, this method is quite involved and
requires enormous computational skill. It is a major problem in deforma-
tion theory to find a description of a versal deformation that leads to an
understanding of the component structure of & .

The deformation theory of rational surface singularities has been
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studied by various authors. We mention Pinkham [Pi], Riemenschnei-
der [Ri], Wahl [Wa2], Kollir and Shepherd-Barron [K-S], Arndt [Arn],
Christophersen [Ch], Behnke and Knérrer [B-K], Stevens [St1], and the
authors [J-8], etc. In particular the class of (cyclic) quotient singularities
has been studied thoroughly, as well as rational singularities of multiplicity
four.

In this article we study the deformation theory of rational surface sin-
gularities with reduced findamental cycle. As this class properly contains
the class of cyclic quotient singularities, our results can be seen as a gener-
alization of part of the results that are known for these singularities. We
have obtained the following results:

(1) Starting from the resolution graph I" we describe how to find equa-
tions for all rational surface singularities X with resolution graph I'. This
is the subject of §2, in particular (2.2) and (2.9).

(2) We find explicit minimal generating sets (as &, v-modules) for T
and T ; see (3.14).

(3) We derive the following dimension formulae (see (3.16):

A dlm(T )= uEBT(4)(;1»1(1)) 3) + dim(H" (X, 6%,

B. dim( X) = ).",ueBm)(m(v) — 1)(m(v)—3).

In these formulae the sums run over the nodes v of the so-called blow-
up tree (1.10) BT which are of multiplicity m(v) > 4. A node v of
BT corresponds to a smgulanty appearing in the process of resolving X
by blowing up points. X is the minimal resolution, and formula A is
maybe best understood as a statement about the codimension of the Artin
component,

(4) The obstruction map is surjective (4.2). This means that the minimal
‘ number of equations for the base space & of X is equal to the dimension
of T

(5) We describe an algorithm for computing a versal deformation of
X ; see (4.6) and (4.8). The equations for the base space # appear as
the coefficients of polynomials that occur as remainders of certain specific
divisions.

The results of this article are based on four main ideas, which we will
describe now.

The first idea is that of Ayperplane sections. This was used before by var-
ious authors, e.g., Buchweitz [Bu], Behnke and Christophersen [B-K], and
Stevens [St3]. Behnke and Christophersen prove that a general hyperplane
section ¥ of a rational surface singularity is isomorphic to a so-called par-
tition curve. If the fundamental cycle is reduced, then Y is isomorphic to
the union |J,¢ ¥, of the coordinate axes in C”, m = mult(X). (Here
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# 1s an index set.}) A basic fact is the converse: Any total space of a one-
parameter smoothing of Y is a rational surface singularity with reduced
fundamental cycle; see (1.4). It is not true for the other partition curves,
however, that. the total space of any one-parameter smoothing is rational;
it is easy to construct counter-examples. This explains partly why the case
of reduced fundamental cycle is easier to handle.

As a semi-universal deformation of Y has been computed by Rim,
one gets immediately equations for X by pulling back the equations for
the semi-universal family. In particular, for p,g € #, p # g, one
gets functions Sy € C{x}, and for p,q,r € #, p,q,r all different,
functions ¢(p, g, r) € C{x}, satisfying a set of compatibility equations
{the “Rim Equations™):

S,=9r, a;p)pr,p;q),
e, q;5)+olg,r;s)+e(r,p;8)=0
such that X is described by the systern of “Canonical Equations™

ququ:Spq’ zpr_zqr:@(p’q;r)
(see (2.2)). The vanishing orders of the Sp g relate to the lengths of chains
in the resolution graph of X, and in fact determine this graph (see (2.7)).
We remark that for the cyclic quotient singularities, the equations are to-
tally different from those found by Riemenschneider [Ri]. Various argu- .

ments in the article are based on these explicit equations.
The second idea is that of looking at a special deformation of X . This is
a deformation having as special fibre X and as general fibre a space having
as singularities the cone over the rational normal curve of degree equal to
the multiplicity of X together with all singularities appearing on the first
blow-up of X . The existence of this deformation follows from the explicit
equations for X (see (2.13)). This deformation plays an important role
in proofs. For example the surjectivity of the obstruction map follows
relatively easily from the existence of this deformation. Moreover the >
statements in the dimension formulae 3.A and 3.B also follow immediately
from it. To get equality in 3.A and 3.B it suffices to lift generators of T}

and T;, over the special deformation. That this indeed is possible is the
content of Proposition (3.15). The proof uses the explicit generators for
these modules.

The third idea is the idea of limits, series, and stability. This idea is not
made explicit nor is it really used in this article. Rather it is a heuristic
principle based on various special results and ideas [Arn, J-S, Str]. Roughly
speaking the philosophy is as follows: weakly normal surface singularities
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appear as limits of series of rational surface singularities. In the resolution
graphs of the members of the series we find chains of (—2)-curves of
increasing length. The archetypical example as that of the 4 o-Singularity
as hmit of the A4, -series. Stability should mean that for mcmbers in the
series with “very long” (—2)-chains the base spaces are the same up to a
smooth factor. This should also be the base space of the limit, up to an
infinite dimensional smooth factor, if properly understood.

The weakly normal limits of series of rational surface singularities with
reduced fundamental cycle have a simple structure and are called tree sin-
gularities. These tree singularities do not appear explicitly in this article
but played an important role in the development of our ideas. Such a tree
singularity has as irreducible components (germs of) smooth planes X for
every vertex p of a certain tree 7. Two such planes X and X p mtersect
in O exactly when {p, g} is not an edge of T'; otherwise they intersect
in 2 smooth curve X, . Moreover, Z,NL, =0if {p,q}+#{r,s}. The
generators of the space of mﬁmtesmal deformatmns of the tree singular-
ity have a simple geometrical meaning: first of all, for each edge {p, q}
of T there is the deformation t(p, g) that opens up the 4 oo-Singularity
that sits on the generic point of £ . These are the deformatmns of the
limit in the members of the series. Second, for every pair (p, g) with
{p, g} an edge of T one can move the curve Zp g in the plane X , and
move X, accordingly. These give deformations ¢(p, ¢) and could be

called the shift deformations. Also, the obstruction space T? of such a
tree singularity has a rather simple combinatorial description.
" In this article we introduce the notion of a limit tree T for a rational

surface singularity X with reduced fundamental cycle, (see (1.12)). The .

relation is that one can view X as a member of the series deformation of
a tree singularity with tree 7 . In this way the limit tree is seen to make a
distinction between “long” and “short” chains in the resolution graph, the
long ones being those that correspond to the series deformations. In fact,
equations for the tree singularities are obtained by putting S,, =0 for
{r, g} an edge of T. This corresponds to making the long chams “in-

finitely long”, in very much the same way as one gets from the 4 -equation

yz— X1 = 0 the equation yz = 0 describing the A_ -singularity. The

explicit generators for 7% and T2 obtained in §3 are [ifts of correspond-
ing generators for the tree singularities, which are substantially easier to
write down,

We will now describe the idea behind the construction of a versal de-
formation of X . A versal deformation X g — % can also be interpreted
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as a flat deformation of the generic hyperplane section Y, so it can be
described by the Canonical Equations:

ququ = qu 3 Zpr'— qu = W(p: g, r) )

where now T,, and w(p, q;r) are elements of &,{x} that satisfy the
Rim Equations. These 7,, and w(p, q;r) are perturbations of the S,
and ¢(p, q; r) defining X . Itis a basic fact that 2-m—3 (the dimension
of the smoothing component of Y) particular ¢’s rationally determine
all the other ¢’s (and S°’s) via the Rim Equations. We call such a set of
¢’s fundamental. Perturbing these fundamental ¢’s arbitrarily to y’s,
one can try to determine the other  ’s in the same way as could be done
for the ¢’s. For this the Rim Equations tefl you to make certain divi-
sions. The biggest space over which these divisions are possible is the
base space 4%, and hence is defined by the coefficients of remainders of
Weierstrass-divisions. The main problem is to find out which w ’s to take
as fundamental. Again this is organized by the choice of a limit tree.

The number of divisions that has to be done is equal to (m—1)(m—-3),
precisely the number of generators of Tj, [B-C]. The generators K(p, q)

of T; in (3.22) are constructed in such a way that with each one of them
there corresponds exactly one division with remainder. Although the equa-
tions for the base space % thus obtained become extremely complicated,
it is our hope that the combinatorial description with the limit tree and the
divisions with remainder will provide us some insight into the structure of
&8 . We hope to report on this in a future article.

The organization of the article is as follows: In §1 we list some facts
on rational singularities and introduce the concepts of blow-up tree and
limit tree. We advise the reader to start with §2, and go back to §1 if
necessary. In §2 the structure of the equations of a rational surface sin-
gularity with reduced fundamental cycle is studied and the special defor-
mation is exhibited. §3 is devoted to the structure of T;( and T; , and
is probably the most technical part of the paper. In §3.A the generators
are constructed and the dimension formulae proved. In §3.B we study the
relations between the generators. For T; our results are complete but for
T;. we only have a good description “modulo moduli”. Finally, in §4 the
algorithm for computing a versal deformation is described. Most of this
section can be understood without the technicalities of §3 if one takes for
granted the results (3.14) and (3.22).

In some of the proofs elementary combinatorics of trees is used. We
strongly advise the reader to draw pictures of resolutions graphs and limit
trees for himself or herself, as we think that it will help understanding



122 T. DE JONG AND D. VAN STRATEN

the arguments. Furthermore, many of the statements in the paper do not
really make sense in the case that the multiplicity is two. In order to avoid
cumbersome formulations and in the conviction that the reader will be

able to find the correct statement for the A, -singularity, we simply ignore
this fact.

1. Preliminaries

In this article we study rational surface singularities with reduced fun-
damental cycle. Three different trees associated to such a singularity will
play a role, and in this preliminary section we introduce these in separate
subsections.

1.A. Resolution graphs, We start with some well-known definitions and
facts. This also serves to fix notations that will be used in the rest of the
article without further mentioning.

Definition (1.1) [Artl]. Let X = (X, 0) be a normal surface singularity
and let ‘

n: (X, E)— (X,0)
be the minimal resolution. X is called rational if R'n_ (@) =0

In that case the exceptional divisor is the union of irreducible com-
ponents E,, each isomorphic to P!, and intersecting transversely. The
(dual) resolution graph T has these E, as vertices, and E; is connected
by an edge to E; iff E, E > 0. For a rational smgularlty I" is a tree.
The fundamental cycle is the smallest positive cycle Z =} ¢, E; such that
Z.E; <0 forall i. This cycle has the property that the d1v1sor (fom) on
X for a general f € m, has the form

(fem)=Z + N,

where N is the noncompact part of the divisor. :
We say that X has reduced fundamental cycleif Z=FE,or ¢;=1, for
all i. There is the following characterisation for X to have this property.
Characterisation (1.2). X is a rational surface singularity with reduced
fundamental cycle < .
Iisatree, E, ~ P! , and for all i one has

~E.E; 2#{j #i: E,nE, # @).

In particular for any tree I" we get examples by choosing the self inter-
sections sufficiently negative. -

With the help of Ayperplane sections one can give an alternative charac-
terization of this class of singularities.
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Definition (1.3). #:={1,2, .-, m},

¥,:C" - C, p € #, coordinate functions on C”,

Y 1= V,e4 ¥, C C” =the union of the coordinate axes Y, := {y, =
0,q#p}.

Characterisation (1.4) [Str, Theorem 4.1.12, Corollary 4.4.6; St4, Exam-
ple 3.5]. Equivalent are

(1} X is a rational surface singularity with reduced fundamental cycle
of multiplicity m .

(2) X is the total space of a one-parameter smoothing of Y, ie., we
have a cartesian diagram

Y - X

I
T

where T is a small discin C.

Progf. Any normal -surface singularity can be considered as a one-
parameter smoothing of a generic hyperplane section. The generic hyper-
plane section of a rational surface singularity is isomorphic to Y exactly
when the fundamental cycle is reduced (see for instance [B-C, 4.3.1]}. On
the other hand, as the total space of a smoothing of ¥, X is normal. Let
7: X — X be a resolution of X. On X we have an exact sequence:
0 - & — &% — & — 0. Here the map is induced by multiplication
with xoz and ¥ = (xoz)”'(0). As 7,85 = &, by normality of X
and 7, = &, by weak normality of Y, it follows from the long ex~
act sequence obtained by applying Rz, to the above short exact sequence
that multiplication with x is injective on the artinian moduie R! 7, (%%);

hence R'n*(é’f) =0, ie. X isrational. (We thank J. Steenbrink for the
above argument, cf. [Ste, (3.11)].) aq.e.d.

We now consider the divisor (x o ®) on X . We can write

(xem)=E+ Y H,
pEF

where Hp is the strict transform of Y;D. Each Hp , D €4 ,intersects a
unique exceptional curve Ep , and thus we get a map # — I'. Note that
the number of Hp 's intersectingan F in ' is —Z.F .

Definition (1.5). The extended (dual) resolution graph™T', is the tree
obtained from I" by adding for each p € # a vertex connected to Ep .
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So the set of endpoints of I', is # and the self-intersection of any F
in T is the number of vertices of T', adjacent to F.
Definition (1.6). We define the length function | by I: T xT — N;
(F, G) — # vertices of C(F, G)
and the overlap function p by p:I'xT'xI' = N;
(F, G, H)~ # vertices of C(F, )N C(G, H).

Here C(F, G) is the chain from F to G (including end points) in T'.
By composition with the above map # — T, p — E!J we get maps

A XA =N,
A XA xH =N,

etc., which we also denote by / and p.
- Example (1.7). Consider the following dual resolution graph:

X

o = (—2)-CURVE; X = (—3)-CURVE

Then one has: I(p, q) =9, I(r,5)=3, etc.

p(rot;q)=3, pla,t;p)=6, plp,q;8 =7, etc.

It is not hard to see that the extended resolution graph I', is determined
by the function /: # x # — N or by the function p: # x % x % —
N. However, one does not need to know the complete / or p function
to determine I',. In fact the knowledge of 2m — 3 particular lengths
determine T, . ‘

Proposition (1.8). Let p € # and {q,,q,, -, w1} = % — {p}.
Let A beasetof 2m—3 . numbers €N, i=1,2,--- ,m—1, p; €N,
i=1,2,--- ,m—2, with the conditions that p; <l and p, < i, for
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i=1,2,---,m~—2. Then there is a unique tree I ,(A) with the following
properties:

() p, q)=1,

(2) p(g;, 955 p)=min{p,[i <k < j} for i <.

Conversely, any tree T, is equal to some T ,(A) for some A. In particu-
lar, for any p € &, the tree T, is determined by the numbers l(p, q), q.€
# —{p} and p(r,q;p), r,a €# —{p}.

Proof. Given a tree I, such a set A can be obtained as follows:

Step 1. Choose a p and ¢, € # arbitrarily and put /, =[(p, ¢,)

Step 2. Suppose we have chosen ¢,,--- , g, then choose ¢, , such
that p(g,, Gy, 3 P)=max{p(q,, r;Plr e Z —{p,q;, - , &}}.

Step 3. Put I, =1p, dppy)s P = Pxs Q1> P) - .

Here we strongly advise the reader to make a picture. g.e.d.

1.B. The blow-up tree. The second tree we consider can be defined
for any rational surface singularity X . Furthermore we introduce the so-
called height function ht on I" that will be used also in 1.C. In order to
define these concepts we recall a result of Tjurina,

Theorem (1.9) [Tj]. Let b: X — X be the blow-up of X at the sin-
gular point. Let T := {F € T : Z.F = 0}, and let X/T be the space
obtained from X by blowing down the curves of T'. Then there exists an
isomorphism: X = X/T. .

So we see that ¥ has a finite number of rational singularities, each one
having as resolution graph a connected component of . This result leads
to the definition of the blow-up tree. of X :

Definition (1.10). (a) A filtration ', on I’ is defined inductively by
IN=r,T,={Fel,_, :FZ_, =0}, Z,_, being the fundamental
cycle of I', ;. In general I', consists of several connected components,
and the fundamental cycle Z, of I', is then defined as smallest, on each
component positive cycle that intersects each F nonpositive.

(b) The vertices of the blow-up tree BT consist of the collection of the
connected components of the I', for k=1,2,.--.

(¢) The height function ht on the vertices of BT is given by

ht(v) :=sup{k:v CT,}.
(d) The vertices v and w are connected by an edge in the blow-up tree
BT iff |ht(v)—ht(w)]=1 and vCw or w Cv.
(e) We also define the height function on the vertices of I" by

ht(F)=sup{k: F €T, }.

(f) For a vertex v of BT we define X(v) as the singularity obtained

from X by blowing down v to a point,
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(g) By abuse of notation \ﬁe can convert any invariant of a singularity
to a function on vertices of BT by putting
invariant(v) := invariant(X(v)).
Example (1.11). We consider the resolution graph of (1.7). Below we
give the blow-up tree, together with the height function and the multiplic-
ities of the singularities corresponding to the vertices.

ht=5 . 2 2
ht=4 3 2
ht=3 4
ht=2 | 4 2
ht=1 5

1.C. Limit trees. Limit trees are used in §§3 and 4 to handle the defor-
mation theory of rational surface singularities with reduced fundamental
cycle. As explained in the introduction a limit tree serves to make a dis-
tinction between “long” and “short” chains in the resolution graph. The
formalization of this idea resulted in the following definition of a limit
tree as'a tree with certain properties.

Definition (1.12). Let X be a rational surface singularity with reduced
fundamental cycle /Z as in (1.3) and p asin (1.6). A limit tree T for
X is a tree with the following properties:

(0) The vertices of T are the elements of 7.

() If {p, r} and {q, r} are edges of T then

pp.a;n)<plg.r;p),  plo,a;r)<plr,p;a).
(2) If r and s are on the chain C(p, ¢) and {p, r} is an edge of T
then
pw,a;ry=p@,s;r).
(3) If p,q and r are not on a chain in T and d is the centre of
p,q,r (iLe. the vertex C{p, g)NC(p,r)NC(g, r) then

pp,a;r) 2 plp,q;d).

The existence of limit trees is guaranteed by the following:

Definition (1.13). Consider a rational surface singularity with reduced
fundamental cycle, and dual graph of resolution I'. A limit equivalence
relation ~ is an equivalence relation on the vertices of I' satisfying the
following two conditions:
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(a) Vertices F with ht(F) = 1, i.e. with Z.F < 0, belong to different
equivalence classes.

(b) For every vertex F with ht(F)=k+1, k > 1, there is exactly one
vertex G intersecting F with ht(G)=k and G~ F.

That such equivalence relations exist follows from Tjurina’s theorem
(1.9) and the definition of the height function.

Consider the tree I'/ ~. In every equivalence class there is exactly one
exceptional curve F, with Z.F < 0. For every such F take an arbitrary
tree T(F) with —Z.F vertices, and replace the equivalence class of F
by T(F) in any way you like to get a tree 7. We define a bijection

p €A « vertices of T,

Every p € # corresponds to a curve E, with Z.E, < 0, hence corre-
sponds to a vertex of I'f ~. There are —Z.E, curves H, intersecting

Ep . Now take any bijection between those curves H ; and the vertices of

T(E ).

Tfleorem (1.14). The tree T thus obtained is a limit tree for X .

Proof. Property (0) of {1.12) is not worth mentioning. It is obvious
from the definition of limit equivalence relation that equivalence classes
are connected. To prove property (1) of (1.12) we first remark that if
E = Ep or Eq‘, then p(p, g;r) =1, so there is nothing to check. The
fact that r lies on the chain from p to ¢ in T means that Ep and Eq
lie in different connected components of I'\ {equivalence class of E,}. As
equivalence classes are connected it follows that the chain from E_ 1o the
center C of Ep , Eq ,and E_in I" belongs to the limit equivalence class
of E_. It follows from (b) in the definition of a limit equivalence relation
that on any chain starting at £, within the limit equivalence class, the
height function is monotonically increasing with steps one. Hence

Wt(C)=HE, ,C)=p(p,q;r1).

As ht(Ep) = ht(Eq) = 1 and the height difference between two connected
vertices of I" is at most 1, it follows that

plg, r;p)=IUE,, C) <ht(C),
plr.p; q) =UE,, C) <ht(C).

So (1) is proven. We will Be more sketchy with the proofs of properties
(2) and (3).
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Let C(r,s) c C(p, q). The subtree of I, spanned by p, ¢, r, and s
can a priori be of one of the following two types:

]
=]

[«
o

r 5 q s

(Here the lines in the graphs do not indicate edges of I',, but rather
. arbitrary chains; so it is a qualitative picture of the subtree. In particular
a=b, b =g, etc. are allowed.) But if A would occur with a #b, a
would belong to the limit equivalence class of r, because r e C(p, q).
Consequently, » would also belong to this limit equivalence class, and
hence s would not be on C(p, ¢). We conclude that B must be the case.
But there we read off immediately that p(p, ¢; r) ={(a, r=pp,s;r),
which is (2). For property (3) assume p, ¢, r are not on a chain, and let
d be the centre of p, g and r in T. Again there are a priori two cases
to consider; ’

c P q - D 2 r
a ' a
b b
r d ‘ q d
But because 4 is supposed to be the centre, it means that @ and hence
b belong to the limit equivalence class of . In C we have

P, a;n —-plp,q;d)=1a,ry—la,d)=I(b,r)-I(b, d)
=p(P, d:")—P(P,-";d)ZO
because 4 € C(p, r). Case D is similar and left to the reader. g.e.d.
Example (1.15). Consider the resolution graph of {1.7):

p q
i r §
X rI—O— O

O—O—O—O—O—O/
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The ovals indicate the limit equivalence classes. The resulting limit tree
T is

t

In this example the limit tree is unique, but the limit equivalence rela-
tion is not. '

One can consider a limit tree T, together with the data:

o for all {p, g} € e(T) the number /(p, g},

e forall {p, r} and {g, r} €e(T) the number p(p,q;r).
We will use the notation (T, /, p) to denote exactly these data.

Lemma (1.16). Thedata (T, 1, p) determine the (extended) resolution
graph T, .

Proof. Consider p, g € #, and dassume {p, g} not an edge of T.
Then choose any r € C(p,q) — {p, q}. From the defining property
(1.12)(2) it follows that we know p(p, g; r). As clearly

Ip,)=1p,n+lg.r)-2.p(p.q;r)+1

we know /(p, g) by induction on the number of verticesin C(p, ) q.e.d.

So from (T, I, p) we can detérmine the resolution graph I', and from
T" one can determine T = I,,T,,--- and the whole blow-up tree as in
1.B. But in fact there is a direct construction of a tree T (together with
data /, p) whose connected components are limit trees for the connected
components of )y , i.e. the singularities of the blow-up.

-___Definition (1.17).. We define an in general disconnected tree f_,_@._l_l__@_g_ o

map of irees
b:T—T

by the following procedure:
e For any p € v(T), we define an equivalence relation ~ on & —{p}

as follows:

rr;S@p(r;s;p)>1 orr=s.

This is an equivalence relation, because of the tree numbers -p(r, 5; p),
p(s,t; p), p(t, r; p) the smallest two are always the same.
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« We define the vertex set v(T) of T as disjoint union of the ~,
equivalence classes for the various p € v(7T). Note that there is an obvious

surjection b: v(T) — v(7T} that associaies (0 a ~, equivalence class €
(T) the element p € v(T),

» We define the set e(T") of edges of T as follows. Let p and g € v(T)
and let p = b(p) and g = b(G). Then we put {3, §} € e(T) if and only
if

() {p, q} ee(T),

(2) ped and g €,

(3) i(p,q) >3.

e For p, 4, and # in the same connected component of T we define:
1, 4):=1(p,a)=2 and p(,d;7) :=p(p, a;)—1.

» Redefine ‘U(T) by throwmg away all vertices not connected to any
other vertex. We also denote v(7T) by Z.

Proposition (1. 18) If (T, 1, p) is alimit tree for T, then (T, 1, B
is a limit tree for T = r,.

Proof. We have to deﬁne a map

Z =v(l)-T,-T, P E,

such that the properties of (1.12) are satisfied. E; is defined to be the
unique curve of I' intersecting E_, p = b(p), such that E; lies on the
chain in T from E to E where g € p. This is mdependent of the
choice of g, because for a.ny other r € § we have p(r,g;p) > 1, and
so the chains from r to p and ¢ to p have at least E. in common.
Because clearly P(Eﬁ . Eé s E.) = p(Ep s Eq; E)) -1, etc., the conditions
of (1.12) are satisfied. q.e.d.

Although the above construction of T looks quite complicated, the
procedure is in fact very easy using diagrams. We will illustrate this with
Example (1.7) .

Example (1.19). We give the complete sequence of blow-ups of the
limit tree (1.15). Each picture corresponds to the singularities of the blow-
up tree of the indicated height, Note that the splittings in connected com-
ponents exactly correspond to the vertices of the blow-up tree (1.11). A big
5,7 etc., attached to an edge is the corresponding value of the length func-
tion /. Small numbers 3,1, etc., attached to corners are the corresponding
values of the p function. So for example

325
r r g

means /(p,r)=3, p(p,q;r)=2, l{r,q)=5.
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2. Equations

Consider a rational surface singularity X of multiplicity m and with
reduced fundamental cycle and let x be a general element of my. As
mentioned in (1.4), the space ¥ ¢ X defined by x = 0 is isomorphic to
the union of the coordinate axes in C™ . Furthermore, X can be consid-
ered as the total space of a smoothing X 5 T of Y. As any deformation
of Y, it is then induced from a versal deformation & — & of ¥ bya
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map j. This means that there is a cartesian diagram:
X — ¥

1

T — . %
For our purposes it is of importance to have an explicit description of such
a versal deformation of ¥ . It seems that D. S. Rim was the first to have
computed this (see [Scha]). Various other authors also have considered
this problem (see [F-P, Al, Si2]). In the following theorem we describe the
result.
Theorem (2.1). Let C™™ Y pe an affine space with coordinates a,,

(p.aeX, p#q) andlet C{ o} be its local ring at the origin. Put

oWw.q;r)=a,—-a,, p,g#r,
Ulp,q,r,s}y=0(r,p; )o(r, q;0)— (s, p; a)o(s, q; p),
D, q,r, s pairwise different.
F = ideal generated by the U(p, g, r, 5s) C C{a 0ol
Let & < C™"Y be the space defined by % and let @5 = C{a, }/F be
its local ring. Furthermore, define elements
Sy =9(r,p;2)o(r,q;p)€Gy foranyr#p,q.
Finally, let % < C" x & be defined by the equations
U, +a,)v, + @py) = Spg =0.

Then the map ¥ — F is a versal deformation of Y .

As a corollary we get the following

Proposition/Definition (2.2). Let X be a rational surface smgularzty
with reduced fundamental cycle. Let C™™ ! have coordinates x, Z,,,
P.q €&, p+#q. Then there exist functions S e 9D, 4:7) € C{x}
with ¢ antzsymmetrzc in the first two variables, that satisfy the Rim Equa-
tions

Rp,q,r)=8,, —o(r,p;9o(r,q;p) =
Clp,g,r;s):= co(p, q;5)+o(q, r,s)+¢(r,p,S)=
such that X is described by the Canonical Equations

Qp, 9) = ZpgZap ~ Spg = 0
L(p! Q3r) ‘=zpr q’: qo(p’ q;r)=0
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Furthermore, none of the Sp g O o(p, g;r) are identically zero. _

Proof. Let X be arational surface singularity with reduced fundamen-
tal cycle. As already mentioned above, from the versality of the family
¥ — % and (1.4) wegetamap j: T — .% . On the level of rings we get
a map

i C{a,,} — C{x}.

Put @, (x) = j*(a,,) € C{x} . Then define
Zpg =V, T+ 8,,(X),
o(p, q; r)(x) = a,,(x) — a,(x},
Spe{x)=0(r,p; Qdelr, q;p).

The Rim Equations and the Canonical Equations now follow immediately
from (2.1). Because X is a normal surface singularity, &, has no zero
divisors, so SM is not identically zero. q.e.d.

The above system of equations for X is very simple and symmetric,
but does not give a minimal embedding in ¢ An intrinsic way to
describe a minimal embedding is as follows: _

Definition (2.3). Let & = C{x, z,,} be the local ring of grm=i+t
The second set of Canonical Equations, the “linear equations™ L(p, g; r)
= 0, define a smooth space germ & inside C™™ "*! of dimension
m+1. We put

@, 1= ¢ [ideal generated by the L(p, ¢; r).

So X is minimally embedded in %’ and its ideal is given by the first
Canonical Equations

Qp.q)=0 ind&g.
We will consider most of the time &, as a quotient of &, , rather than
&.

The space % can be identified with cm! with coordinates x, Yy in
various ways. For example one can choose for every p € & a g(p) €
# \{p} and put Vp = Zyp - The linear equation L(r, g;p) = 0 can
then be seen as a definition of the function z,, as Zow T e(r, g(p); p).
By substitution of all these definitions in the equations Q(r, s} =0 we get
a minimal system of equations in the coordinates x, Yy These equations,
however, are rather complicated and are not easy to handle. Furthermore,
Theorem (2.7) shows that the coordinates z,, have a natural interpre-

tation on the resolution X of X . So it seems wise to work as long as
possible with the Canonical Equations.
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Lemma (2.4). Assume that (Spq » 9D, q;r)) satisfy the Rim Equa-
tions. Then _
(1) Ulp, g, r,8):=9(r,p;a)0(r,q:0)— 0(s,p; q)p(s, q; p) =0,
(2) Vb, g.r,s):=0(r,s;p)o(s,p;9)— (s, r; @)p(r, q; p) = 0.
Assume furthermore that the z,, satisfy the Canonical Equations. Then
any product Z,,Z2, T # 5§ can be written as a unique C{x}-linear combina-
tion of Z,.s 24, and a function of x only. More precisely, one has
B3) zp2,— (02, r; 9z, +0(q, 5; 12, )+ 00, 1, )olg, s; =S,
=Q(r,s) in .
Special cases:
4) 2,2, — (9P, 75 8)2,,+ 00, 5;7)2,) = Or, 5) in &y.
(5) 2,2, -0, q;Nz,,=(r,q) in &,.
Proof. Clearly, U(p,q,r,s) = ~R(p, q,r) + R(p, q,s). Further-
' more, a direct computation shows that

Vip,q,r,8)=Ulp,q,r,8)-C(r,p,s; q)e(r, q;p)
—C(r,q,s:p)0(s,p; 9),
hence (2).. The other things we leave as exercises to the reader. q.c.d.

We now will prove the converse of Proposition (2.2).

Proposition (2.5). Let a system of functions (Syg» 00, d; 1)) satisfy
the Rim Equations, and let X C . be the space defined by the Canonical
Equations. Then X is a rational surface singularity with reduced funda-
mental cycle iff S, #0forallp#qge#.

Proof. The Canonical Equations, belonging to a system of functions
(Sp 2> 9P, a; r)) that satisfies the Rim Equations, define a space X that
is the total space of a one-parameter deformation of ¥ . So from (1.4) it
follows that X is rational with reduced fundamental cycle if the general
fibre X,, ¢ small # 0 is smooth. The equations for X, are

ZpaZap "S5 =0 S =Sy () €T,

Zp—Z2,=fP.q;1),  flo,a;r)=v.q;r1)()eC,
and we may assume 5,, # 0. The projective closure Z of X, in P:=
P(Z, _, ©Cu)~P" is given by the equations

Jx==t

2 .
ZpaZ0p = Sp =0, Z,,—Z,=f(p,q;r.u.
We will show that Z is a rational normal curve of degree m, cf. fWal,
Corollary 3.6]. Choose a p anda ¢ # p € #. Let (s : ¢) be homoge-

neous coordinates on P'. Consider the map o: P! — P , defined by the
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following formulas:
2 _ 2 _
Z =51z =5, I wu=sll,

z, =5, 5St0YL); r#p,q.

Here II:= Hr#p’qu; L = Spq-t — flg, r; p)s. (Because zps(s # p) and
z,, form a coordinate system for .%°, this suffices to define the map.)
From the assumption that all the s, # 0, (and hence, via the Rim Equa-
tions, f(r, s; ) # 0) it follows that all the L, are different and unequal
to § or t. Hence Im(g) is a rational normal curve of degree m. Fur-
thermore, we leave it as a straight forward exercise to the reader to check,
using the identities (2.4), that Im(¢) C Z. But because X, is a flat de-
formation of Y, it follows that Z is Cohen-Macaulay of multiplicity m .
Consequently, Im(c) = Z, and hence X, is smooth. q.e.d.

So a solution (Sp 2 ¢(p, q;r)) of the Rim Equations determines via
the associated Canonical Equations a rational singularity X with reduced
fundamental cycle. We will now show how to determine the resolution
graph I" of the minimal resolution #: X — X out of the S, - It will turn
out that ¢(p, ¢q;r) and the z,, also have a very natural interpretation
on X . First we need a definition:

Definition (2.6). Let X be a rational surface singularity with reduced
fundamental cycle, anid dual graph of the resolution I'. For p, ¢ € # we
define a divisor Z‘D g on the minimal resolution as follows:

Z,, =) p(F,p;9)F,
FeT
c
Z,=Z,+> pE,p;)H,+H —H,.
rei
Theorem (2.7). Let X be a rational surface singularity with reduced
fundamental cycle, defined by the equations (2.2). Let n: X — X be the
minimal resolution. Then
Al (qu om) = qu
B. The length function |: # x # — N is determined by
Ip,q)=ord(S, ) +1.
C. The overlap function p: # x # x # — N is determined by

~pp,q;ry=ord(p(p, q;1)).
(Recall that the length function determines T, , hence T, cf. (1.8).)

Proof. 'We first note that the function Z, is a parameter on the line
Y. Indeed, restricting the function z,, to the generic hyperplane section
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Y given by x = 0 we get the function Y, which is a parameter for ¥ . It
follows from the equation Q(p, g) = 0 that the support of the divisor of
Zpy is contained in Y and that z__ vanishes with order = ord(S, ) on
Y. Consider the extended resolution graph T, ; see (1.5). The vanishing
order of the function z,, along the curves corresponding to the vertices
of I', defines a function
0, v(,)—N.
From the above remarks it follows that

0,,(4) =0 and opq(Eq) =1.

The fact that (z, 4 ° 7)-F =0 for all exceptional curves F translates into
the following condition on the coefficients 0,,(v), v vertexof ' CT,:

a(v)o,, W)= Y o, (w).
) weadj{v)

Here adj(v) :={w: {v, w} anedge of T,}, and a(v) is the number of
elements of adj(v). In other words, Opy 1852 harmonic function on T, .
For such harmonic functions on a tree the following Monotonicity Principle
holds: Every chain on which a harmonic function h is strictly monotonic,
can be extended to a maximal such one, which has its end points in the end
points of the tree T, .

Consider the chain C(g, p) from g to p in I',. We claim that for
every chain C in T', which has only one vertex with C(g, p) in com-
mon the function Oy, is constant. If not, there is a subchain C' of C
{connected to C(g, p)) on which 00q is strictly monotonic, say increas-
ing. By the above principle, we can extend C’ to a maximal chain D on
which o,  is increasing. Let r € # be the endpoint of D, so the ver-
tex of I', on whick o |, takes it maximum. In particular we have that
0,,(r) > 0,,(E,). But from equation (2.4)(5): ZpgZe = 0@, T q)2,, it
follows that .

0,0(1) — 0, (E,) = 0,,(r) - 0, (E,) —0,(r}+0,(E)=0-1~-0+1=0,

which is a contradiction. So o must be constant on chains branching off
from C(g, p). From this it follows that the restriction of 0,, to Clg, p)
is also harmonic, and hence the values increase with steps one. This proves
A and also B, because ord(S_ )=o0_(p)=1I(p, g)+ . Statement C then
) . pq pa

follows most easily using (2.4)(5). q.e.d.

Remark (2.8). Some of the equations get very natural interpretations in
the light of (2.7). For example, the Rim Equation R(p, ¢;r) just means
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that the chain from p to g can be seen as being composed of C{p, d) and
C(d, q), where d is the “centre” C(p,g)NC(g,r’nC(r,p) of p,q,
and r. Because d is counted “twice”, the order of Spq is l{p,q)+1,
rather than /{p, g). We suggest the reader to find similar interpretations
for the equations (2.4)(2) and (2.4}(5).

The results of (2.5) and (2.7) imply the following: Given any I' and
any system of functions Sp g ¢(p, q; r) € C{x} such that

(a) ord(¢(p.gq;r))=plp, ¢;r);ord(S,,)=1(p,q)+1.

(b) The Rim Equations are satisfied, then the Canonical Equations (2.2)
define a rational surface singularity with reduced fundamental cycle and
resolution graph I'. We will now indicate how for a given I' we can find
all Sp , and @(p, g; r) as above.

Algorithm (2.9). Step 1. Choose as in (1.8) a set A such that T, =
T,(A). :

Step 2. Choose arbitrary functions S, 0 € C{x} of order I, + 1.

Step 3. Choose functions ¢(g;, 4,,,; p) of order p;.

Step 4. Put 9(q;, 4;; P} = Yicpe; P{Gps Gpprs P) Jor i < j. Now
ord (¢(q;, 4;; P)) = pla;, q; p) and for an open dense set % C (GC{J.:})’”'2
of ¢ ’s in Step 3 we have equality.

Step 5. Forget about the numbering of the q,. In the sequel r, s, and t
are distinct elements of # \{p}.

Step 6. Define ¢(p,s;r) =S, /¢(r,s; p). Note that this division is
possible because p(r,s,p) < pi{s,p;r) by Step 4.

Step 7. Define S, :=g(p, r;s)p(p,s;r).

Step 8. Define ¢(s, t;ry:=—{o(p,s;r)+o{t,p;r)}.

Proof. Necessity. If the cocycle conditions C(r, 5, t; p) are to be sat-
isfied for all r, s, and £, then we have no other choice for ¢(g;, ;3 )
than the one in Step 4. Because the order of a ¢ has to be the correspond-

ing p, we have to restrict the ¢(g;, g,.,; p) of Step 3 to the open dense
set ¥ .

Sufficiency. We have to show that for this choice of ¢’s and §’s all the
Rim Equations are satisfied. It suffices to show that U(s, r, p, 1):

g, r;s)ep,s;ry—o(, r;s)e(t,s;ry=0 fort#p.
By the definition in Step 8
p{t,ris)ot,s;r)={e@,s;nN+elt,p;He,r;s)+e(t,p; 5}
So we have to show that

pp,s;re(t,p;s)+olt,p;nelp, r;s)+e(t,p;re(t,p;5)=0.
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By Step 6 we have that the left-hand side is equal to

SpS,lor.s30) " ot, 30" + 0t r; p) (s, ri p) !
+o(t,rip) o, 5307

Now the last two terms inside the brackets are equal to

o(t,r;p) oG, rip) " +o(t, 55 0)7)

- -1 -
=o(t, r;0) {olt, s;0)+ 0(s, ri D)}ols, r; p) o, s5p) "
=o(s,7;0) " 0(t,s;p)”" by Step 4.

Now it follows easily that the Rim Equations are satisfied. g.e.d.

Example (2.10). Let X be a rational surface singularity with dual
graph of resolution as in Example (1.7). We will determine the explicit
equations of X in C°®. We will follow the steps of (2.9):

Step 1. Wetake p=p, ¢, = ¢, g,=7r, g3 =35, g, =t. We relabel
them as

01 2 3 4,
Thus

Sp=x2,  p(1,2;0)=x",
So3=xl4a ' 40(2’3;0):-76“;
S,=x2,  93,4:0)=x°.
Step 4. Using the cocycle condition we get
o(1,3;0)=x"+x",
6 1 6, 7 11
9(2,4;0)=x"+x", p(1,4;0)=x"+x"+x .
Steps 5 and 6. Compute ¢(0, i; j) by division. The result is '

9(0,1;2)=-x°, o0, 153 = —x /(1 +xY, 9(0, 1;4) = —x"/(1 + x + x),
0(0,2; 1) =x?, (0, 2;3) =~x7, p(0,2;4) = —x"/(1+x%),
p(0,3; =x"/(1+x%,  0(0,3;2) =x, 9(0,3;4) = -x7,

9(0,4; N=x*/1+x+x%), 00, 4;2) =x*/(1 +x%), (0, 4:3) =x5.
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1t is now possible to write down equations for X minimally embedded.
We choose as coordinates X, zy,, Zgy, Zg3, Zg4» a0d z,5. We get the
following ten equations:

Q(0, 1): zmzm—xm =0,
0(0, 2): 2z + %) —x2 =0,
(0, 3): gz +x +x')-x* =0,
0(0, 4): zo(zpp+ X +x +x) —x? =0,
o1, 2): ZoiZpa T xszm - J"3202 =0,
0(2, 3): ZgZgy + xs‘z02 —xzy, =0,
Q(3, 4): z03204+x7203 —xsz04 =0,
o1, 3): ZgyZg3 + (X /(14 X))z — (X1 +x")z205 =0,
0(2, 4): ZopZos + (X 11+ X)) zgy — (X1 +x7))2gy = 0,

O(1, 4): 29,2, + (X /(1 + X + X)) zg; — (XYL + %+ %))z, = 0.

As solutions (S, , ¢(p, ¢; r)) to the Rim Equations correspond to ra-
tional singularities with reduced fundamental cycle, one expects families
of solutions to the Rim Equations to correspond to flat deformations of
X . Of course, this is the case and completely trivial.

Lemma (2.11). Let X be described by the canonical equations (2.2)
belonging to a solution (Spq, o(p, g, r)) of the Rim Eguations. Let
X; — S be a flat deformation of X over S. Then there exist functions
T WP, a;0€ Go{x} that satisfy the Rim Equations

T,,—vwr.p;qy(r,q;p)=0

" and such that X — S is isomorphic to the deformation of X described by
the Canonical Equations belonging to (5!;D g wip,q;r):

ZpyZap — Tpg =03 Zpr_zqr_ww’q;r)=0‘
Conversely, any such system (Tp . w(p, q;r)) determines a flat deforma-
tionof X.

Proof. X can be considered as a deformation of ¥ over § x T by
lifting the function x € &, to c‘ﬂ"Xs . Soitisinduced byamap Sx7T — F .
Such maps correspond exactly to solutions of the Rim Equations in the
ring Fg{x}. q.e.d

Corollary (2.12) (cf. [K-S, 3.4.5, 3.4.9]). The class of rational surface
singularities with reduced fundamental cycle is closed under deformation.
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Proof. Obvious by (2.2), (2.5), and (2.11). q.ed.

The simple description of flat deformations of X in terms of pertur-
bations of the (Spq »9(p, ¢g;r)) asin (2.11), will also be used in §4. Fur-
thermore, Lemma (2.11) can be used to find an interesting deformation
that will be used in §§3 and 4.

Theorem (2.13). Let X be a rational surface singularity with reduced

Jundamental cycle. Consider the first blow-up b: X — X . Let X PRI Xp

be the singular points of X . Then there exists a one-parameter deformation
X, of X on the Artin component such that X_ for s not equal to zero has
D + 1 singular points isomorphic to Xy, -, X, and the cone over the
rational normal curve of degree m(X).

Proof. We look at the equations of X given by the Canonical Equa—
tions (2.2). When we write ¢(p, g;r) = x0(p, q; r) Sy, = x2§
put w(p,q;r)=(x-s5)@p,q:r), Tg=1(x~-3) Sp then the system
(T,g> WP, q; 7)) satisfies the Rim Equatlons Hence by (2.11) it corre-
sponds to a one-parameter deformation of X, given by the equations

2_
ZPG’ ZQ’P SPG *

zpq qr_(x_s)¢@$ Q;r)‘

(x —5)

For s 3 0, s sufficiently small, one has a singularity at x = s, z,, =0
Vo, ¢, which by an application of (2.7) can be recognized as the cone over
the rational normal curve of degree m(X). ‘
At x =0 one performs the coordinate transformation
Z,, = (X _S)qu for all p and ¢

and upon dividing the quadratic equauons by (x— s) and the linear ones
by (x —s) one gets the equation of X in the x-chart, hence has singular-
ities as asserted. It is a bit boring to check that these are all singularities
on the general fibre. To show that this deformation maps to the Artin-
component we show that it has simultaneous resolution. One blows up in
the curve Z,, =0, and x =5, to see that for s # 0 one resolves the cone

over the rational normal curve, and for s = 0 one regains X . As after one
blow up one is left with a trivial deformation, which obviously has simul-
taneous resolution, it follows that the above deformation has simultaneous
resolution. q.e.d.

Remark (2.14). By openness of versality it follows that there exists
a one-parameter deformation of X on the Artin component, with for
every vertex v of BT(X) the cone over a rational normal curve of degree
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m(v) on the general fibre. We leave it to the reader to write down such a
deformation explicitly.

3. Spaces of infinitesimal deformations and obstractions

AA In this section we study the modules T} and T; of a rational
surface singularity X with reduced fundamental cycle. These modules,
which are finite-dimensional vector spaces over C, play an important role
in the deformation theory of X: T;, describes the infinitesimal deforma-
tions and Ti‘, is the space that contains all the obstructions to extend given
deformations to one defined over a slightly bigger space. We refer to [Art
2] and [Schl2] for the basic facts about deformation theory. Let us recall
the definitions of T)1: and Ti, for a general space germ X C cV. Let X
be described by anideal I = (f},--- , };) c&:=C{x,, -, xy} and put
&, = &/I. Consider the free module F = ]  &.e, on generators e,
i=1,--+,p,and define & to be the kernel of the natural map &% — I
induced by ¢, — f,. Hence we have an exact sequence:

(=) 0-F -F —-1—-0.

So & is the module of relations between the generators f; of the ideal
I, and it contains a sub-module %, , generated by the Koszul-relations
fiej — fjei . Taking Hom we get a map (where Hom = Hom,):

Hom(¥ , &) — Hom(&Z , &) .
The image of this map is contained in the sub-module
Ay =Hom(Z [%,, ).

We let a be the induced map o: Hom(5 , &) — 4, . The kernel of this
map o

Ker(a) = Hom(I, &) = Hom (I/I*, &) = Ny

and is usﬁally called the normal module of X in C~. The obstruction
space is by definition the cokernel of o: Coker(a) =: T;, . Denoting the
vector fields on CV by 8, there is a natural map f

B:000, - N;: 8@l (f—=3f)).
The space of infinitesimal deformations is by definition:

Coker(f) =: T;. .
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So elements of both T! and 77 are represented by classes of homomor-
phisms: For T': ‘homomorphisms I = #/F — Gy, 72 : homomor-
phisms % /%, — O, .

It is our aim to describe T1 and T as explicitly as possible in the case
that X is a rational surface smgulanty with reduced fundamental cycle.
In 3.A generators for T' and T2 are constructed directly in terms of the
equations of X . Furthermore, dimension formulae are given. 3.B is de-
voted to the C{x} module structure. Moreover a second set of generators
for T7 is constructed, and C-bases are given.

3.A. Generators. We start with a description of the sequence (%) in
our case.

Definition/Proposition (3.1). Let X be given by the Canonical Equa-
tions Q(p, q) =0 as a subspace of the smooth space & as in (2. 3). Let
I C & =08 be the ideal generated by the Q(p, q) as in (2. 3). Let
F = EBP g€ ;?c? [p, 4] the free rank (77)-module on symmetric symbols
[p.4l=1g,p), p#4q,andlet F — I be the map induced by

91— 0@, q).
Let Z CF be the submodule generated by the elements

[p: g;r]:= Z,P[q,r]—zrq[p,r]+gﬂ(p, q;nlp, g1

(P, q.r distinct elements of # ; remark that [p, q; rl+q, r; rl+[r, p; 4]
= 0). Then the sequence 0 - % - F — I — 0 is exact.

Proof. In other words, the [p, ¢; r] generate the module of relations.
A direct computation of

2,24, 1= 2,00, 1) +ep.q; NP, 9)

gives, after several applications of the linear equations, the expression

—(Z,pR(q, r,p)-— z Rp.r a)+elp.q;NRP,q,1)),

where R(p, g;r) := Spq —@¢(r,p; g)e(r, q, p) is the Rim Equation as
in (2.2). So we see that [p, q; r] is a relation exactly because the Rim
Equations hold. That these [p, ¢; r] actually generate the module of all
relations follows from the fact that [p, g r] is a lift of the relation

Yoo} =¥, (n,%,)

between the equations of Y, and these relations are easily seen to generate
the relation module for ¥. q.e.d.

For the rest of this section we fix a limit tree T for the resolution graph
I" of the minimal resolution n: X — X, as in (1.C).
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Definition (3.2)., Let T bealimit tree and let p and ¢ be two different
vertices of T, .
o We define subsets of # as follows:

Zp,q)={reZ :peC{r, q)},
Ep,qy={se# :9eC(p,s)},
AP, qy=X-ZL(p,q)-Z@p,q).

Here C(p, g) denotes the chain from p to ¢ (endpoints included) in the
limit tree T .
o We define numbers as follows:

lp,q)=max{p(a, ¢;p):acZ(p,q)},
rip,q)=max{p(p,c;q):c€#(p, q)},
s(p. q)=max{l(p, q). r{p., )},
m(p, q)=min{p(p, q; m):me.#(p, q)}.

Usually, if no confusion is likely, we abbreviate .Z(p, ¢) to .2, etc. We
think of .Z, %, and .# as the sets of vertices of T to the left, the right,
or between the vertices p and g, respectively. Notice that p € Z(p, gq)
and g € #(p, q), and that the vertices of .# are not necessarily on the
chain C(p, g).# = means that {p, g} isanedgeof T.

Definition (3.3). A homomorphism k: 5 — &, is called a lefi-right
homomorphism (with respect to the pair p, g), if

A{[r,s]} =0, r,seZJH orr,sc A UVE.

If we denote by [r, s]” the homomorphism & — &y dual to the inclusion
Gy —F; L=|r,s] (so [r, s1¥(la, c]) = d,,0..+0,.0. ), then such a left-
right homomorphism % can be represented as:

h= Z k. [r, S]V; h=h(r,s]) E&y.

re# se

Definition (3.4). We call a relation [a, b; c] separated if the elements
a,b, and ¢ belong to different sets &, # , # and nonseparated if it
is not separated. We let %, C % be the submodule generated by the
nonseparated relations [a, b;c].

Lemma (3.5). Let p and q be verticesinalimittree T and h: F —
&y a nonzero left-right homomorphism with respect to p and q.

Then the restriction of h to F,, C £ C F s zero if and only if the
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Jollowing identities are satisfied for the values h:

k. =z z
L ,b,C: k ac ca ba )<1
(a )i (hbc zy olc,a3 b))~

} Mo Zgq Zed
R(a,d,c).rk(hac za o(a,d ))

ac

Jorall a, be & andall c,de % .

Proof. We have to distinguish several types of nonseparated relations.
For relations [r,s; 7] with the property that {r,s,f} ¢ Z U.# or
{r,s, &} C £ U it is trivially true that A(Jr, s;t]) = 0 for any left-
right homomorphism. The other nonseparated triples to consider can be
divided into four classes (we always assume a, b €. and ¢, d € ).

I la, &;cl; h(la, bscl) = z,hy, ~ z,,h, +0,
2 [e,a;8]; h(e, a; bl = 0 zbahbc + qa(c a; b)h.ac ,
III [d,c;al; A(d, c; al) = Zoghy = Zplug +
IV: {a,d;cl; h([a,d;ch=0- zdh + ¢(a, a', oh,, .
The first two equations are recognized as two of the minors of the matrix
for L, and the last two as two minors of the matrix for R. (The third
minor is the identity (2.4)(5), independent of £.) g.e.d.
Corollary (3.6). A lefi-right homomorphism h: F — & wzth the prop-
erty that h(Z, ) = 0 is determined by its value h([p, q]) =
Conversely, any h g € Oy such that the rational functions h ° hp 4 and
h,; (defined by the equatzons (A), (B), and (C) below) are actually in cﬁ’
defines a left-right homomorphism h with h(.9'z’ =0
Proof. From the above lemma, A(%, ws) = 0 18 equivalent to the sets of

equations L, R. We now use these to compute the coefficients 7, from
h

pg *

From L{a, p, q): b,y = bz, /0(a, a; p) (A).
From R(p, d, g): hpd =h,.-Z../9{@.d;9) (B).
FromR(a,d,q): h,,; = haq z,4/0(a, d;a) (C).
From L{a, p, d): hyy = h 4.z, /0(d, a; p) (D).

So we expressed all coefficients 4 g in terms of h

We note that the above system of eguations is overdetemned for ex-
ample, the two expressions for h,; (C) and (D) have to be equal. But
this comes down to ¢(g, a; 15)¢(a, d;q)=o¢(p,d; q)e(d, a; p), which
is the identity V(p, g,d, a) of (2.4)(2). The other compatibilities are
checked in a similar way. q.e.d.
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Definition (3.7). Let p € # . We define a function 4 = A(p): & x
Z — Q(F,), the quotient field of &, as follows:
e For r,s and p different we put

Ae=2z,Z,/0(s,r;p)=—2,.

s For r# p we put
A=z =—A

Br pr rp*

o Forall re# weputt 4 =0.

Definition/Lemma (3.8). Let. p € # . Define coefficients &, = %, (p)
as follows:

o For r,s, and p different. € = (¢(p,r,s)/e(s,r;p)).

e Forr#p: €, ,=0;%,=1.

e Forallre#: €,=0.
Then one has A, = %rszpr - i;‘;rzps. If peClr,s), then € e C{x} and
A, €8,

Proaf. Consider the case that », s, and p are all different. Then, by
{2.4)(4), one has

As=(p@, r;s)e(s,r;p)z, +(op, s;1)/e(s, r; P)) 2,
and by property (1.12){1) and (2} of the limit tree we know that

ps,r;p)<pp,s;1); pls,r;p)<plp,r;s)

if p € C(r, s). Soindeed A, is holomorphic if p € C(r, s). The other
cases are trivial. q.e.d.

Definition/Proposition (3.9). Ler T be a limit tree, and p # q €
& vertices. Then there exists a unique lefi-right homomorphism ¢ =
o(p, q): & — &y with the following properties:

(1) o(lp, al) = 7,,.

(2) o(Z£,,)=0.

Furthermore, o has the following additional properties:

(3) olla, c)) = A

a(la, c; m])=g(a, c; m)i

ac ¥
{4) g([m,a;c))=z,A,. =—em,a;c),,..
o(lc, m; al) = —z,,4, =—¢(c,m;a),,

(in these formulae: a,b € F(p,q); me #(p,q); c,d € F#(p,q),
and i, =A,.(p)).
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Proof. We apply Lemma (3.6) to compute the values of ¢ starting
from o([p, q]) := z,,- We find

(A) a([a’ q]) = zpq‘zpa/(o(q E) a ; p) = Aaq E)
(B) a([p3 d]) = pq'zqd/¢(p! d; Q) = zpd = H’pd H
(D) U-([a’ d]) = zpd'zpa/(o(d! a ; p) = Aad -
By (3.8) these 2, are in &,, because by construction one has p €
C(a, d}. This proves the existence of the ¢. The values on the vari-
ous terms are easily checked to be as stated. q.e.d.
Definition/Proposition (3.10). Let T be a limit tree, and p # g € #
vertices. Let [ € C{x} a function with ord(f) =s(p, q), where s(p, q)
is defined in (3.2). Then there exists a unique lefi-right homomorphism
t=1(p, q): & — &, with the following properties:
(1) e, a) =1,
(2) (%) =0.
The values on the other [r, s] are then given by
(3) la,¢ly=1z,,/¢(4.a;p),
e, dD) =Sz, /ep.d; q),
wWla, d) = f.z,,.2,,/9(q, a; Plpla,d; q).
(Asalways, a,be Z and c,d e %)

Proof. The values on [a, ¢] and [p, d] are in &, , because by defini-
tion of s(p, g) we bave ord(f) =s(p, 9) > p(q, a; p), p(p. d; q). Fur-
thermore, we have 2,200 =04, a; d)zqa+ga(p ,d; a)z,, asin (2.4)(3).
By property (1.12)(1) of the limit tree we have

pg,a;d)>pla,d;q); plp,d;a) 2 pd, a; p).

By property (1.12}(2}) of the limit tree we have

pld,a;p)=pg,a;p).
Hence

ord(f.¢(q, a; d)/p{g, a; p)pla,d; q)) >0,
ord(f.e(p, d; a)/e(a, a; p)pla, d; q)) 2 0.

This proves that z([a,d]) €&, . qed.

We will now construct out of these ¢ and ¢ homomorphisms our gen-
erators for T' and T2.

Definition/Proposition (3.11).

o For each edge {p, q} € e{(T) we have 3 homomorphisms:
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op,q), tp,q)=1t(g,p), o{g,p)eHom({l,&)=N,.

So in total we have defined 3(m — 1) normal module elements.

» For each ordered pair (p, q) such that {p, q} not in e(T) we have
a homomorphism Q{p, q)=0o{p, q) /xm(p"” € Hom(% [, Oy) = Ay.
So in total we have (m — 1)(m — 2) such homomorphisms.

Proof. The first thing to see is that when {p, g} € e(T), then the set
#(p, q) is empty; there are no separated relations and so &%, = & .
Hence in these cases g(p, g) and 7(p, g¢) vanish on all relations, so are
in fact in Hom(J, &y ). From the values of 7 one sees immediately that
p,q)=1(q,p).

Now if {p, g} is not an edge of T, then the valuesof ¢ =a(p, g) on
the separated relations are given in (3.9):

o(la, c;ml)=g¢la, c; m).A,,
o([m,a;c])=~p(m, a;c).4

am?
o([c, m; al) = —p(c, m; a)d,,,

where A, is asin (3.7). Now p € C(a, ¢) and p € C(m, a),so 4, and
A are actually in &y, by (3.8).

By property (1.12)(1) and (2) of the limit tree p(a, ¢; m)= p{p, q; m)
>m(p, q). By property (1.12)(1) and (2) of the limit tree p(m, a;¢) >
pla,c,m) > m(p, g). Because [a,c;m]+[m,a;cl+[c,m;a]l=0,
it follows that the values of the restriction of o(p, g) to the relations
F c F are all divisible by x™?°? . As these a(p, ¢) obviously vanish
on %, , we get by division elements Q(p, g) € 4,. qe.d

These constructed elements of N, and A4, give rise, by taking classes,
to elements of T;, and Tj. respectively. In order to keep notation as
simple as possible, we will not make notational distinction between these
elements in the Hom or in the T, but we will say where the element is
to be considered if any ambiguity arises.-

We will now show that our homomorphisms project to generators for T}
and T§ . The idea is to use the slicing sequence for ouarmap x: X - T,
representing X as the total space of a flat deformation of Y.

Proposition (3.12) (see also {B-C)). Consider the exact sequence

. 1 X, ol 1 2 X, ol B 2
"_’TX/T_’TX/TE’TY“‘TX/T"’TX/T_’TY_'""

(1) By [G-L], 2.2 and [Gr] one has dim(Im(a)) = dim(smoothing com-
ponent on which the smoothing of Y occurs) =2m—3.
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(2) The normal module N, is generated by homomorphisms
e YoVy 2 Yy Test— 0.

One has my,. Ty, = 0. From this it follows that u(T /T) = dim(Im{a)) =
2m~3.
(3) The module A, is generated by the homomorphisms

G [P, @51y, Ir,piql=0; [g,r;plm -

One has m},.TIE =0,
It follows that

Tyyr) = dim(Im(B)) = dim(7}) — dim(Im(a))
=mm—-2)—2m—3)=(m - 1}(m - 3).

Yy

(4) One has
Ty/p = Coker(8,, ® &y — Ny), Ty = Coker(€ 8 7, — N )

50 Ny —» T}UT — Tx- TX,T — T;.

(Here u(M) denotes the number of generators of a module over a local ring,
© is the module of vector fields on the ambient space of X, and ©_, ¢ ©
those vector fields that kill dx .)

Corollary (3.13). (1) u(N,) <3m-3.

(2) u(Ay) < (3/2)(m— 1)(m 2).

(3) ,u(T;) =2m~-3 or 2m—4.

Proof As the module ©_, of relative vector fields has m generators
and Tx /T has 2m—3 generators by (3.12), it follows that N, has at most
3m—3 generators. Similarly, as the number of generators of Hom(# , & )
is clearly m(m—1)/2, and the number of generators of T2 is (m—1)(m-3)
by (3.12), it follows that A, has at most (m —1)(m — 3) +m(m— 1)/2 =
(3/2)(m — 1)(m — 2) generators. Finally, Al, is the quotient of S\'"X/;r by
the module generated by the image of the vector field d..1f 8 mapstoa
generator of T X/T , then T v 1s generated by 2m — 4 elements; otherwise
the number of generators is 2m —3. q.e.d.

We shall see below that the inequalities in (1) and (2) are in fact equal-
ities. Also, we will give a simple criterion to decide between the two
alternatives of (3).

Proposition (3.14). Consider a rational surface singularity X with re-
duced fundamental cycle, and with equations as in (2.2). Let T be a limit
tree for X, and let o(p, q),1(p, q), p, q) the homomorphisms as de-
Jined in (3.11). Then one has

rel
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(1) the 3(m — 1) homomorphisms

o@,q), tp,9)=1(q,p), olg,p), {p,q}ee(d)

form a minimal set of generators for N, .
(2) The 3(m — 1)(m — 2}/2 homomorphisms

Qp,q), Ip,q1 =[g,p1, ©Qlg,p), {p.q)notanedgeof T

form a minimal set of generators for A, .

Consequently, the o's and T’s generate T;( and the L °s generate T}(.
Proof. Let R be the composition N, -» Ny/m N, — Ny/m,.N,.

(Note that N, is the normal module of X in its ambient space, whereas

Ny is the normal medule of Y inside the hyperplane section x = 0; the

map is obtained by reduction “ mod x ™.) Consider the C-vector space

A= @ (Cop,eCup,qeCo(g,p)CNy.
{p,q}ce(T)
As dimg(#") = 3m—3, and the number of generators of Ny is by (3.13)
at most 3m — 3, it suffices to show that the restriction of R to /" is
injective. Let n = Equa(p, q) + B, t(p, 4) + qua(q, p) € 4 and
assume that R(n) = 0. Let {a, b} € e(T). Using (3.9) and (3.10) we see
that only three terms contribute to n({a, b]): '

n(la, b]) = A2, + By Jop + ApgZps»

where f,, € C{x}, ord(f,) =s(a, b) = 1, see (3.2).
So we get

R(n)([a, b]) = A .y, + 4,9, -
From (3.12)(3) it follows that A([a, b]) € »5 for any & € myNy. So
A,, = A,, = 0. Tohandie the coefficients B,, , we choose for all {a, b} €
e(T) a ¢ € # such that s{a, b) = p(a,c; b) or s{a, b) = p(b,c; a).
Without loss of generality we can assume s(a, b) = p(a, c¢; b),and {b, c}
€ e(T). Again, by the formulas of (3.10), we have

nla, c]) = Babf(aa b)([a, c]) + Bbcr(bs c)(a, ¢}
=B, [z /0(a, c; b) + By Sy Zp,/0(C, a5 ).
Hence, putting x =0
R(n)([a, c]) = B,,.(f/0(a, c; B))(0).y, + By .(fy./0(c, a; 5))(0).y,.

Now the coefficient (f,,/¢(a, ¢; b)}(0) # 0, by the choice of ¢. As be-
fore, we conclude that B, = 0. So from R(n) =0 it follows that n =0
and hence the first part of the theorem is established.
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The proof of the second part follows the same kind of pattern: Let S be
the composition Ay —« A, /myAy — A, /myA, . Consider the C;vector
space

&= P (COp,gecC,q’ eCQ4q,p).
{p.q}ge(T)
As dimg (&) = 3(m — 1)(m - 2)/2 and the number of generators of A v
is by (3.13) at most this number, it suffices to show that the restriction of
S to  is injective. Let a = " 4,Qp, a)+ B,,[p, q]" + 4,,Q(4, p)
and assume that S(a) = 0. Fix r,s € #. We will show that A, =
B = A, =0 from the induction hypothesis Ay =By = A4, =0 for
all @,b eC(r,s), {a, b} not equal to {r, s}. Choose an m € C(r, 5)
such that p(r, s; m) = m(r, s). From the induction hypothesis and (3.9), -
(3.11) it follows that only three terms contribute to a([r, s: m]):

alr, s; ml) = 4,(r, s)([r, s; m]) + B,[r, s]"([r, s; m])
+ 4, Qs, r)([r, 55 m])

m{r,s)

=A,.0(r,s; m)/x z, .+ B o(r,s; m)

m(r,s)

+ A, @(r,s; m)/x z

sr

Hence, S(a)([r; s; m]) = ( s + A, ¥,).u, where

u=(p(r, s; m)/x"™")(0)

is nonzero by the choice of m . From (3.13)(4) it follows that A([r, s m))
€my forall he myd,. So A_=A, =0. As S(r, s]") is equal to
{the class mod m,) of the homomorphism [r, s]V € Ay, and this is part
of the minimal generating set of Ay , we also find that B, =0. So from
S(a) = 0 it follows that @ = 0 and so the second part of the theorem is
proven. q.e.d. _

So we have concrete sets of elements minimally generating N 'y and A,
By (3.12), certain relations between generators arise, when projected to
T', resp 77, It is of interest to make these relations explicit (see (3.20)),
but we can find dimension formulae without knowing these relations. The
following proposition seems to be an essential property of the deformation
constructed in (2.13).

Proposition (3.15). Consider the one-parameter Xe—= S of X asin
(2.13) and the associated long exact sequence:

LA T2 =

S T e | 2 5 2
M TXS/S - TXS/S =Ty — sz/s - TXS/S

Then o and B are surjective.
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Proof. We only have to lift generators of T}( and T)Z( to the relative
situation. By Proposition (3.14) the homomorphisms defined in (3.10} and
(3.11) are such generators, defined universally in terms of the ¢(p, g;r)
and the limit tree 7. The deformation X — § is described as in (2.13)
by replacing ¢(p, ¢;r) by ({x — s}/x)e(p, q; r). Making the same re-
placement of ¢’s in Definition (3.10) (together wnh the replacements f —

((x — 5)/x)f) and in (3.11) (together with x™?>? — ((x — 5)/x)x™@* 9
we first notice that all divisions occurring are in fact possible. The fact
that these lifted homomorphisms in fact live in N X, and A4 X, is formally
the same as for the special fibre X. g.e.d.

Part A of the following theorem is a generalization of a result of Behnke
and Knorrer [B-K]. Special cases were also conjectured by Wahl [Wa2,
6.7]. Part B generalizes a theorem of Behnke and Christophersen [B-C,
5.11]. _

Theorem (3.16). Let X be a rational surface singularity with reduced
fundamental cycle. Let n: X — X be the minimal resolution of X . Then

A dim(Ty) = 3, epriy(m@) — 3) + dim(H' (X, 85)),

B. dim(T%) = 32, epra (M) — 1)(m(v) - 3).

Here BT(4) is the set of vertices of the blow-up tree BT of X with
multiplicity > 4.

Proof. We consider the deformation of (2.13). The proof of B isvery
simple: by surjectivity of & and £ from (3.15) we have that T XIS is flat
and compatible with specialisation. Hence

I
. 2 . 2 . 2 . 2
dim(Ty) = dim(Ty ) = > dim(7 ) +dim(7¢ ),
- k=1
where X, X,,--- , X, are the singularities of the first blow-up, and C,,
is the cone over the rational normal curve of degree m . As dim( Tg. )=
(m—1){m —3) (see [Arn, B-C]), the result follows by induction. We now
turn to the proof of part A. For a rational singularity, denote by cod(X)
the codimension of the Artin component in T}( . As H' (X, B) describes
the deformations of X, which map down to the Artin component, A is
equivalent to the statement
cod(X) = Z (m(v) — 3
YEBT(4)
As cod(C,,) = m — 3, (see [P, §51), we have to show that

cod(X) + ZP: cod(X, ) +cod(C,,).
k=1
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The map o of (3.15) surjective, so by [G-L, 2.2], dlm(T ) = dim(Im(a))
is the dimension of the Zariski-tangent space at a general point of j(S)
where j: 8 — the base space of a semi-universal deformation of X in-
ducing the one parameter deformation Xg — 5. As j(S) lies on the
Artin component, which is well known to be smooth, it follows by an
easy application of openness of versality that the codimensions are
additive. q.e.d.

The deformations of X can be divided into those for which all the E,
can be lifted and those that change the resolution graph topologically. To
be more precise, there is an exact sequence:

0 — Bx(logZ) —» 85 —» P, (E;) — 0.
From this one obtains after taking cohomology the dimension formula:

dim(H' (T, &) = Y (-E] - 1) +es(X),
where es(X) := dim(ES), ES:= H'(X, 8x(logZ)).

Here ES is the tangent space of the functor of equisingular deformations in
the sense of Wahl (see [Wa3]). A fundamental theorem of J, Wahl states
that the natural map ES — T;[ is injecrive {Wa3, Theorem 4.6].
Definition (3 17), Weput T3F = X +/ ES , where we identified ES with
its image in T . We will refer to T as the topological deformations.
The number es(X) = dim(ES) could be called the modality of X .
The modality es(X) is a rather subtle invariant and is in general not de-
termined by the (analytic type of the) resolution graph. Taut singularities
have es(X) = 0, and there are lists of those [Lauf].
Example (3.18). We take again our Example (1.7). In (1.11) the blow-
up tree is given, We find

dim(Ty) =2+ 1+1+24 =28,
dim(T2) =8+3+3 = 14.

(According to [Lauf], X is taut, so es(X)=0.)

3.B. Relations between generators. By (3.16) the dimensions of 1'"“’P
and T are discrete invariants of X, that can be determined from the
rcsoluuon graph. On the other hand, (3.14) gives us generators for Ty"
and T as &@,-modules, and hence as C{x} modules, because wYT =0
fori=1,2, (see {3.12}). So one expects to be able to give concrete C-
vector space bases for these spaces. To do this, one needs to understand
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the relations between the generators, and for this it is convenient to have
simple recognition criteria for elements of N, and Ay :

Definition (3.19). Let M bean &,-module. A subset S C M is called
determining if for any homomorphism «: M — &, we have

alg=0=a=0

(or what is the same, Hom(M/(S}, &) = 0). In other words, any homo-
morphism is determined by its values on S.

Lemma (3.20). A. Theset S ={Q(p, g)l{r. q} € e(T)} is determining
for I/I*.

B. Let S C % bea set such that forall p, g € v(T) there isan r(p, q)
on the chain from p to q in the limit tree (not equal to p and q) such
that [p,q;r],[r,p;4ql, and [q,r; p] arein S. Then the classes of the
elements of S is determining for % [ %, .

Proof. Statement A follows from (3.6} and (3.14)(1) (although an eas-
ier proof is possible). For B we consider the relation between the relations
(checked by a calculation):

z,,Irs 8501+ 2,15, 45 Pl + Z,19, 75 p]
+3{p(s, a;p) —o(r, s; p))Ir, g5 ]
+1(plg, r; p)—o(s, q; p))s, r; gl
+3o(r, s:py—o(g, r; PDig, s; 711 =0.

Let o € &, . We will first show that o takes zero values on relations
[s, g; p] for which p, ¢, and s lie on a chain in the limit tree. If s lies
on the chain from p to g then take r=r(p, q). If s=r then a takes
zero values on [s, g; p] by assumption. Otherwise we may assume by
induction (on the distance between vertices in the limit tree) that o takes
zero values on all relations occurring in the above relation between the
relations except for [s, g; p] and [g, r; p]. However a([g,r;p]) =0
by assumption and it therefo_re follows that:

zalls, g; p1) =0.

But as &, has no zero-divisors it follows that a(s, g; pl) = 0. The proof
for the case that s is in .Z(p, g) UH(p, q) is similar. For p, ¢, and
s not on a chain, take r to be the centre of p, ¢, and s in the limit
tree, and use the fact that we just proved that « takes zero values on all
relations in which r occurs. gq.e.d. :
Although the Q(p, ¢) are generators for T , it turns out to be conve-
nient to work with certain other elements K(p, g) € 4, . These K(p, g)
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will be used in §4. To define these, we need an additional structure, that
is also convenient for picking a C-basis for T; .
Definition (3.21).
» The distance function d : # x # — N is defined by the length of
the chain from p to ¢ in the limit tree. Thus:
(0} dp, p)=0;
(1) dp, g)=1«{p,q}ce(T) .
» A function min: & x & \{(p, ¢)ld(p, q¢) < 1} = # is called a
(coherent) minimum function if it has the following properties:
(0) min(p, g) = min(g, p);
(1) min(p, ) € C(p, 9)\ {p, q};
(2) p(p, q;min(p, q)) =m(p, ¢), where m is as in (3.2).
(3)If Cla,c) cC(p, q), d(a,¢)>2, and min(p, q) € C(a, c), then
-min{a, ¢) = min(p, g).
Using (1.12) one sees that such coherent minimum functions do exist.
» A function max: e(T} — v(T) =2 is called a maximum function
if it has the following property: If r = max({p, q}) then ecither

{r,p}e€e(T) and p(r,q;p)=3(p, q)
or
{r.a}ee(T) and p(r,p;q)=s(p,q).

Here s(p, g) is as in (3.2). Using (1.12)(2) such maximum functions do
exist. ,

Proposition (3.22). Let min: # x % — # be a coherent minimum
Junction. Put

Z(min) :={[p, g; ml, [g, m; pl, [m,p; 91; d{p, q)
> 2 and m =min(p, q)}.
Then for all p, q with d(p, q) > 2 there exist unique elements
K(p,q)e Ay
with the property that: (with m := min(p, gq))
Kp,q)p, ¢, m)=~z,,,
lg.m;pl=2,,

Im,p;q]l=¢(m,p;q),
r=0, forall other r € #(min).

These K(p, q) generate TAZ,.
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Proof. Assume for the moment that such a set of generators exists.
Then it should be possible to express our Q(p, g) € 4, in terms of these
K(r,s) and [r, s]". We try the following Ansatz:

v
(*) Q(p 3 q) = Z (ArsK(r! S) + Brs[ri S] + Aer(S 3 r)) .
re.Z(p,q), sE®(p.q)

By (3.20)B we can check such a formula by evaluations of [r, s; m],
[s, m;r], and [m, r; s], where m = min(r, s). We summarize in Ta-
ble 1 the values of Q(p, g}, K{r, s), [r, s]Y, K(s, r) on these relations:

TABLE 1
Qp.q) K(r,s) [r,s]7 K, 1)
[r,s;ml (U)A, -z, 9(r,s; m) Z
[s,m;r] (V)4 zZ, -z, p(s, m;r)
[m,r;s] (W, o(m,r;s) Zim —Zg

Here U = (p(r, 53 m)/x"®D); V = —(p(s, m; N/x""P); W =
—(p(m, r; s)/x™? D} Hence, looking at [r, s; m] and comparing coef-
ficients we get

Uk,=—-4..z, +B,or,s;m+4, .z

rsoms sromr*

Writing 4 = %rszpr — ?;rzps asin (3.8) and using the linear equations the

left-hand side can be rewritten as
UG 2,y — CopZps + (B 00, m3 1) — €, 0(p, m; 5)).

rs
Now we compare coefficients and get
U'%s = Asr ? U'gis'r = Ars s
U@op,m;n)—-F, 0p, m;s))=9(r,s, mB,.

We claim that indeed the left-hand side of this last equation is divisible by
@(r, s; m). To see this, assume for simplicity that r and s are different
from p. Then one has, by (3.8) and (2.4)(2)

&0, m;1r)-% 0, m;s)
= (o, r; e, m;r)+op,s;Ne(p, m;s))/els, r;p)
=(—plp, m; s)p(m, s; )+ 9@, s; elp.m; s))/e(s, r; p)
= (p(p, m; e, m; r))/o(s, rip).
Now '
pls,rsp)=pim,r;p)< plp, m;r)
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and

plrys;m)=p(p,s;m)< p(p, m;s)
by the defining properties of the limit tree T (1.12). Hence, one can
divide by ¢(r, s; m) to define B_.

A tedious, but rather straightforward calculation show that with these
choices for 4,_, B, and A, the evaluations of (*) on the relations

rs? s
[s, m;r] and [m, r; 5] also hold. (A Iittle miracle.)

Given these facts, we can now reverse the argument to show that there
exists such homomorphisms X(p, ¢): by descending induction on the

distance d(p, g) between p and ¢ in the limit tree:

-1
K(p,Q)=U 'Q'(paQ)_ Z
reZ(p,q).5€%(p,q)
{r,s)#(.q)

(4, K(r,5)+B,[r,s]" + 4 K(s, r)

This works, because ‘Z; g = 1 and U is a unit by construction. q.e.d.
Proposition (3.23). (1) The vector field ®(p) := quz_{p} 80z, is
in O, and its image in Ny is

>, o).
¢ io.gieem

(2) Write p(p,q;r)=a e — g, JOr some a,, € C{x}. The vector field

8:=08/0x+ Y 84,8, isin@,.

x“rs%z,
r,Se¥

The image of ¢ in N, is

Y (S, ) 0 0) +0,8,,0(p, q).

{2, q}ee(T)

(3) The image of [p, q1", {p,a}e€e(T) in Ay, is

p,al'= > Kp.9+ 3. Kg,r).

5 :min{p,s)=g¢ r:min(q,r)=p
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Proof. The vector field 9(p) is tangent to the linear subspace &,
because it gives zero on all linear equations L{r, s, ).

On the quadratic equations Q{r, 5s) with {r, s} anedge of T we only
have nonzero values if {p, g} = {r, s} . The element

swy= >, a9

g:{p.q}e€e(T)

has the same values by (3.9). Because the Q(r, s) with {r, s} € e(T)
form a determining set, the formula (1) follows. The proof of {2} is similar
and is left to the reader. The proof of (3) is easy because the values of
the left-hand side and the right-hand side on elements of #(min) are
equal, as one immediately checks. Hence (3) follows because #Z{min) is
a determining set of relations. g.e.d.

Corollary (3.24). The number of generators T}[ is 2m — 4 when on
the first blow-up there is no singularity of multiplicity m. Otherwise the
number of generators is 2m — 3.

Proof. By (3.12)(2) we have that the number of generators of T;’/:r is
2m —3. We have 3m — 3 generators ¢ and 7 for N,. By (3.21)(1)
we have m relations between the ¢’s in T;,,,T , coming from the vector
fields 3(p), p € # . It can be seen that the & from (3.21)(2) maps to a
generator of Ti’/r exactly if there exist p, g, r with p(p, ¢, r)=1. But
this means precisely that ¥ has no point of multiplicity m. g.e.d.

Proposition (3.25).

() X' 9(p, q) €ES,
(2) x](ps‘?)_s(P’Q)'Fl,r(p, q) c ES,
(3) x""OK(p,q)=0 in T.
Here [, s, and m are as in (3.2).
Proof. Consider {p,q} € e(T), and let ¢ = o(p,g) € N,. This

normal module element corresponds to a deformation of X over Cle]/ (82)
described by the following perturbation of the Canonical Equations:

Q(r,s)+eo(lr,s)) =0, r,se¥.

By the definition of the ¢ ’s (3.9) we get, with a € & = #(p,q), c €
H=%(p,q):

Qa,c)+ed, =0, ,
O(r,s)+e0=0 ifr,seLorr,sec#.
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Using (2.4), we can rewrite this as:

ch(ch +8)— S =0,
(z,. +€% )z, + ¢€,) - S, + 2e.8,./o(c,a;p)=0 fora+#p,

where the % are as in (3.8).
Let @ be the coordinate change given by

T T g s%:zc’

Zeg 7T Zeg g%m *

z,—z, ifr,seForr,se.
Then one has
D (Q(p, ¢) +e.0(lp, c])) = O, ¢),
O (Q(a, ¢) +e.0([a, c])) = Q(a, c) + 2.5, [p(c, a; p),
@ (Q(r, 5) + e.o([r, sD) = O(r, 5).
We recognize this as the Canonical Equations belonging to

w(a,c;p)=9pla,c;p)-e,
w(r,s;p)=9(r,5;p), r,seZLorr,seX,
]erspr’ )‘E%’-—{p}.
Note in particular that in this canonical form the equations Q(p, s) are
unchanged for all s € # — {p}.

Now the normal module element x'? ?g corresponds after a similar
coordinate change to the Canonical Equations belonging to the solution

w(a,c;p)=p(a,c;p)—ex'®?,
w(r,s;p)=¢(r,s;p), r,seZorr,se#,
Tr, =S re# —{p}.

P pr’
Because by definition p(a, ¢; p) < I(p, g), it follows from (2.9) that there
is a one-parameter deformation having XD ag first-order term, and
with
¥a,c;p)=p(a,c;p)-tx'?9,
Y(r,s;p)=o(r,s:p), r.seforr,se#,
T,=S,., re#Z —{p}.
Here ¢ is the deformation parameter. Because p(a, c; p) and / (p,r) are
constant under this deformation by (2.7) and the definition of /(p, gq) it
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follows from (1.8} that the dual graph of the resolution of a general fibre
of the one parameter deformation is X is the same as the dual resolu-
tion graph of X . In particular, x'?9g is an infinitesimal equisingular
deformation, hence in ES.

The proof of the second statement is similar and left to the reader.

To prove the third statement we note that from (3.22) it follows that
K{(p, q) is a linear combination of the Q(r,s) for which C(r,s) D
Cip, q) and min(r, s) = min{p, ¢). In particular m(r, s) = m(p, g) for
such 7 and s and thus x™??K(p, ) = 0 follows from x™@9Q(p, q)
= 0, which follows from the definition of (p,q). q.e.d.

We now attach to a rational singularity with reduced fundamental cycle
C{x}-modules that turn out to be isomorphic (as C{x}-modules) to T)‘f’p
and TAZ,:

Definition (3.26). Let X be a rational surface singularity with reduced
fundamental cycle.

A, Let Tf.f,p be the C{x}-module generated by symbols &(p, q),
olg,p),and 7(p,q) = t(g,p) for p,q ¢ & with {p, g} an edge of
the limit tree, subject to the relations:

> olp,q)=0,
g:{p.q}ee(T)

xl(p’ﬂcr(p, Q')=0, xI(P:‘I)‘S(P-fI]'*'IT(p’q) =0,
Z ax(Spq)/-Gq"r(p > Q) + axapqo-(.p ? q) = O'

{p.q}ee()

B.Let T} be the C{x} module genérated by the symbols: K(p, g) for
p,q €& with {p, g} not an edge of T, subject to the relations:

> K.+ Y. Kg,n=0,

s : min(p,s)=q r : min(g,r)=p

X" OK(p, g)=0.

Theorem (3.27). There are isomorphisms of C{x}-modules:

A T - T,

B. Ti, — T_i, .

Progf. This is essentially a counting argument., We will first prove state-
ment B. By (3.23)(3) and (3.25)(3) there exists a well-defined surjection
of C{x}-modules:

2
Tf.Y_»TX
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giver by sending K(p, ¢g) to X(p, g). To show that this map is an iso-
morphism we only have to show that the dimensions as C-vector-spaces
are equal. So we will show that

. 2
dim(T, ) = Z (m(v) — L)(m(v) — 3).
VEBT(4)
By definition VTi, only depends on the limit tree T , and the chosen co-
herent minimum function min. We change notation and put

TZ(T) =T
Let T be the first blow-up of T in the sense of (1. 17).

We will choose a coherent minimum function for 7 in the followmg
compatible way: if p, g are vertices of a connected component of T,

.n.

then min(p, ¢) = the unique vertex r on the chain from p to ¢ in T
with

b(r) = min(b(p}, b(q)).
(Here b: v(T) — v(T) is the map as defined in (1.17).) Otherwise it is
not defined. Remark that by construction of 7T it follows that mm(p q)
is not defined exactly when m(b(p) B(g)) =1 or {p, g} € e(T). We put
TZ( @Tz T, x) where T= [17,, the decomposition into connected

components

- We will show that there is an isomorphism of C{x}-modules:

a: THT) 2 xTX(T).
It is defined on generators as
«(K(p, ¢)) = x.K(b(p), b(q)).

Because clearly dim(T*(T)/x.TX(T)) = (m — 1)(m — 3), the dimension
formula then follows by induction.

To show that the map o is well-defined, we have to show that the
defining relations are mapped to zero:

a(x""K(p, q)) = x"T K (b(p), b(g).

By (1.17) we know that m(p, g) = m(b(p), b(q)) -1, so by definition the
right-hand side is indeed zero. As for the first relation: :

a{ Z K(p, s)+ Z K(‘Ia")}

: min(p,s)=¢q r: min(g,r=p

=x{ Y. Kb, b))+ > K(b(q),b(r))}-

: min(p,s)=¢ r: min{g,r)=p
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By definition of the minimum function on 7 we may rewrite the index
sets in the second expression. For the first term we get

{s: min(b(p), s) = b{qg) such that m(b(p), s) > 1}

and similarly for the second term. Because for all s € # with m(b(p), s}
=1 we have that x.K(b(p),s) =0 in TZ(T) we may as well take the
index set to be {s: min(b(p}, s) = b(g)} and similarly for the second
term. Hence it follows that the map o is well defined.

To show that « is an isomorphism we exhibit an inverse of «:

g xTHT) —» TH(T).

" We define § on generators x.K(r, s) as follows: If m(r,s) = 1, then
xK(r, s) = 0, so we need not consider this. If m(r, s) # 1, there exist
unique p and ¢ in a connected component of T such that r = b(p),
s =b(g) and we put f(x.K(r, 5)) =K(p, g). It is proved in a similar way
that f# is a well-defined homomorphism of C{x}-modules, and clearly it
is inverse to «. This completes the proof of B.

We now turn to the proof of A. Again, by {3.23) and (3.25) there is a
surjection of C{x}-modules:

top top
T, =T,

by sending generators to generators with similar names. We show that they
have the same dimension as C-vector spaces, and hence are isomorphic.

The C{x}-module T‘X"p is of the form (S @ T)/(r), where r is the
relation .

Z ax(Spq)/f‘;)q’T(p! q)+axapqa(pi q) = 0'
{p.q}ee(T)
Here S is the module generated by the o(p, ¢) and T is generated by the
7(p, q) , subjected to the obvious relations. Note that the C{x}-modules
S and T only depend on the limit tree T, and therefore we can write
S=8(T), T=T(T). As in the proof of B one shows that there is an
isomorphism
S(TY S x.8(7).
Because dim(S{T)/x.S(T)) = m — 2, it follows that
dmS(T) = Y (m(v) - 2).
vEBT

For the T we have to use a different argument; We claim that

dmT(T) =Y (-E; - 1)— S 1 +1.

YEBT(3)
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(Here BT(3) is the set of v € BT with m(v) > 3.)
This is equivalent to the statement that:

(%) Z I(p, q)~s(p, g) = #vertices of I” — #vertices of BT(3)
{p,q}ee(T)

because Z{p geem 1 =m—1= E(—E. —2)+1. Formula (%) is obviously
true for an A, singularity. (Here we formally put s{p,g)=0.)

To prove fonnula (*) it suffices to show that it is “stable” under blow-
up. So, consider T asin (1.10), the resolution graph of the first blow up.
We have that #vertices of T-#vertices of I' = #{E, : Z. E; < 0}. Moreover
the number of vertices of BT(3) reduces by one. So the right-hand side
of (x) changes by #{E,: Z.E, <0} — 1 which is equal to

Z ~Z.E~ ), (-ZE-1)-l=m~1- Y. (-Z.E,—1).

i:Z.E<Q i:Z.E<0

Now by (1.17) edges {r, t} of T correspond to edges {p, g} of T (p=
b(r), g = b()) with l{p, q) > 3. Furthermore:

r,ty=1(p, q)~-2; sr.t)=s(p,q)—1.
Thus one has
> lrn-str,- Y. p,9) -5, q)
{r.t}ee(T) {p.a}ee(T)
=m-1-#{{p,qtce(T):l(p, q) = 1}.

So (=) is equivalent to:

#{p,atee(N): lp,q)=1}= 3 (-Z.E—1)

i:Z.E<0

which is an easy-to-prove property or limit trees. (In case that the tree
comes from a limit equivalence relation, this follows immediately from
the definition (1.13).) This concludes the proof of the above claim. By
adding it follows from (3.16)

. . 1
dim(S(T) @ T(T)) = dim T,* + 1.
Because r # 0 in S(T) & T(T) it follows that
. 4+ T
dim(S(T) @ T(T)/(r)) < dim T},” .
On the other hand we already had the surjection
S(T) @ T(T)/(r) - Ty
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Statement A follows from these two facts. Remark that it also follows that
r is a sockel element of S(T)&T(T), which can also be seen directly from
the definition of . q.ed.

Remark (3.28). From (3.27) one can write down C-basis for Ty® and
T; , but this involves further choices. For T2 'y this can be done using a
maxin;tum Junction as in (3.21). The following elements form a C-basis
for Ty .

K(p,q),xK(@p,q), -, x"" K(p, q),

where p, g are such that d{p,q) > 3, or d(p,q) = 2 and g #
max{p, min(p, q)) . This basis will be used in §4 to express the obstruction
map.

Furthermore we remark that we do not know exactly the &-module
structure of T;, and T} although it should be possible to calcnlate this.

In [B-C] it is claimed that there exist generators X, z,,--- , z,, of the

maximal ideal of &, such that z,c = 0 for all k. However, their proof
is wrong and in fact one can construct rational singularities with reduced
fundamental cycle for which this is not true.

4. An algorithm for computing a versal deformation

In this section we will describe an algorithm for computing a versal
deformation of a rational surface singularity with reduced fundamental
cycle. This is done by constructing an explicit flat family and using a
criterion of versality of such a family. The same criterion was used by
Arndt [Am]. In order to formulate this criterion we recall some basic
facts from obstruction theory (see also for example [Laud]). Suppose that
we have an embedded family X over §':

Xy eV xcM

Lo

S cM
Let % be the local coordinate ring & , and let S be defined by an ideal
F C % . Let the ideal of X c C" be generated by f, - ,f , and let

the ideal of X; be generated by fig, -~ , fi5-
The ﬂatness of X; over § is expressed by the following: Flatness in
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terms of relations:

The family X; — § is flat
xEs
All r=(r;,ry, -~ ,r,) with r;f; =0 can be lifted to
re={ryg>Tags " » rpS) with Eris'f;.s =0in £ ®F .
Suppose that X; — § is a flat family, and that we have chosen for

all relations r such lifts r¢, and consider a small surjection of &, . This
means that we have an exact sequence of the form:

0=Vl —-0,-0,

where V' = (F/.7), &, = %[, and F. C F an ideal such that
m. V =0, » =maximal ideal of % . Hence V is a C-vector space.
Associated to these data there is an obstruction element

ob € TXZ, ®:V
defined as follows:
(1) Take arbitrary lifts f,, forr, - ,j;T of the fi¢, fog, " ,J;S.
(2) For every relation r = (r,, 1), - , r,) take an arbitrary lift r,. =
(Figs Fogs =7 rr) of rg.

(3) Given all these choices, we put A{r) = Xrip S €O @V
{(4) A can be considered as a well-defined element of

Ay ®CV=Hom(9E/.9? Oy BV

(5) By varying the choices made in step (1) and step (2) the class of 1
in T ®c V' is well-defined. This class we denote by ob and call it the
obstructlon element of the family X, — §.

The interpretation of the element ob is the followmg The flat family
X; — § can be extended to a flat family X; — T exactly when the
obstruction clement is zero.

Now choose % = =% . The obstruction element for the corresponding
small surjection gives by transposition rise to the obstruction map

ob": (F[m.F) — T;.

(Here * means C-dual space.)

The above-mentioned versality criterion now is the following:

Lemma (4.1}. A flatfamily Xg — S is versal if and only if the following
two conditions are satisfied:
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{1} The Kodaira Spencer map
204 1
(”"'5/ .sz) - TX
is surjective.
(2) The obstruction map
(FJmF) =T
is injective.
(We do not recall here the definition of the “well-known™ Kodaira-
Spencer map.)
For the (easy) proof we refer to [Am]. We remark that one gets a semi-
universal deformation if the Kodaira-Spencer map is an isomorphism.
Condition (2) can be interpreted as saying that the dimension of the
image of the obstruction map is equal to the minimal number of equations
to describe the base space of a semi-universal deformation. In general, the
obstruction map is not surjective. In our case we have, however,
Theorem (4.2). Let X be a rational surface singularity with reduced

Sfundamental cycle, and F be the base space of a semi-universal deforma-
tion of X, defined by an ideal .5 . Then the obstruction map

ob*: (F/mFY — T2

is an isomorphism.

Proof. First we remark that the theorem holds for X = C, , where C
is the cone over the rational normal curve of degree ». See e.g. [Am].
Take a small representative of & (again denoted by ). It suffices
to show that there exists a points y € %, arbitrarily close to 0, with
the property that the minimal number of equations to describe the germ
(F, y) is equal to dim(Ti,) . We consider a one-parameter deformation
Xy — T asin (2.14). Tt has on a general fibre singularities C, ., for
all v € BT. By versality there exists a map j: T — £ inducing this.
deformation. Let y be a generic point of the image j(7). By openness
of versality, (%, y) = X gr(B(m(v)))x smooth space, where B(m} is
the base space of a semi-universal deformation of C,, . As the minimal
number of equations to describe a space is additive under taking cartesian
products, the theorem follows from (3.16), once we know the truth of the
theorem for C,,. q.e.d.

We now turn to our construction of a (semi-uni)versal deformation for
any rational surface singularity with reduced fundamental cycle. First we
will describe this in the analytic case, and later we will indicate how to
obtain an algebraic representative of our family.
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From now on we fix a rational singularity X, described by the Canonical
Equations (2.2) associated to a holomorphic solution to the Rim Equations
Spe» 9P, ¢; r} € C{x}. Furthermore, we fix a limit tree T for X (see
(1.12)), with coherent minimum function min and maximum function
max as defined in (3.21). Before describing our construction, we need
some definitions.

Definition (4.3). For all pairs p, g with {pr, g} € e(T) we choose
polynomials

— 2 k
Spg = Spgo T Spq1 X T SppaX Tt S X e,
— 2 m
Ly = Lago Hlpg X+ 1,0X" +- tlhm* T+

(with Ly, = tqp) » Where the coefficients are indeterminates or zero, such
that the corresponding monomials

. 1 i k
U &'o, 0), %<0, 9), x°0(a, D)ls,g» 1,0, S0 # O
{p.q}ee(T)

form a basis of T} .

As T ;, 1s generated over C{x} by the o’s and 7’s, such a basis does
exist. We let % = C{S,4i> tpg;> Sgpx} be the power series ring on these
(nonvanishing) indeterminates. Similarly, we have #{x}, and we con-
sider the s, and ¢, as elements of #{x}.

Definition (4.4). Let T be a limit tree, and let max: e(7) — o(T) =
# be a maximum function as defined in (3.21). Associated to such a
maximum function, we define the set & C # x % of fundamental pairs
as follows:

P.q)eF adp,q)=1, or p=max(m, ¢) for some m € Z.

(Note that in the second case {p, m} and {m, ¢} € e(T), so dip,q)=
2).) Remark also that if d(p, ¢) =2 and (p, q) is a fundamental pair
then ¢ = max({p, min(p, g)}).

Definition (4.5). We choose some splitting of the g-cocycle; i.e. we
choose for each (p,q) € #Z x#, p # ¢, a function bpq € C{x} such
that

bpq—brq = qD(P: r Q)'
For each fundamental pair (p, ¢) € 2 we define
e if d(p,gq)=1: By =l;vm-%-s(ﬂ,}J € #{x},
o if p=max(m, g): Qpg = by 1y~ Sm €¥{x}.
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We put &, ={a,|(p,q) € P}

Inductive Process (4.6). We will describe  a procedure that, starting
from the above data produces:

s anideal F Cc ¥,

s clements T € #U{x}, p#qgei,

e clements w(p, g, Ve {x},p,q#res”.

This is achieved by defining inductively

e ideals S c A C.--CF C¥,

o subsets & CH C---; &, ={a, € X{x}|d(p, q) <k},

» subsets ¥, C ¥, C .- ¥, = {w(p,a:r) € Z{x}|d(p, r)&d(q, 1)
<k},

o subsets F| CF, C--- G ={T,, € %{x}d(p, q) <k}.

Initialisation,

.« S =1{0},

o ¥ Cy,

o ¥, :If d(p,r)=d(g,r)=1,weput y(p,q;r):=a, —~a,,

o F: I dp,q)=1,put T, :==w(r,p;q)¥(r,q;p), where r =
max({p, g}).

Remark that w(r, p; ¢) and y(r, q;p) € ¥p.

Induction. Suppose .7, , &, , ¥, , F, have been constructed. Consider
p,q € #,with d(p,q) = k+ 1, and let m := min(p, g). Clearly:
Gy € &, wip,g;m) € ¥, Tpm € 7, . By the WeierstraB Division
Theorem we can find unique @ and R such that:

Tom=Q¥(@,q;m+R
where 0 € #{x} and R € #{x} such that

deg (R) < ord, (y(p, ¢; m)) = ord{p(p, ¢; m)) = min(p, g).
We define
(g, m;p):=Q, E,=R.
(Remark that £, =0 if d(p, ¢g)=2 and (p, q) is a fundamental pair.)
We put
Fer1 =T (T ld 0, @) =k +1]),

where qu C # is the ideal generated by the coefficients of E,- We can
now define

T, =vwlg, m;p)w(p,m;q),
a, =y, mp)ta,,.
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Finally we put ,
wip,q;r)i=a,-a, ifdp,r&d(g,r)<k+1.

Thus we have defined Ferl s i1 Yol Ty -
Proposition (4.7). Let ¥ and T, wip,a:r) bethe result of the In-
ductive Process (4.6). Then the Rzm Equanans are satisfied modulo 7

ie.

R(p,q;8): Ty —w(s,p; q)(s, a;0)=0 in(%[5){x},
Clo, g, r8): wip, @)+ w(g, r; )+ w(r, p;s) =0 in (%] F){x}.

Proof. The fact that the Cocycle equations C (r, a, r;5) holds, in fact
not only mod &, follows trivially from the structure of the Inductive
Process. In fact, the splitting of the cocycle in (4.5) is only introduced to
control the Cocycle equation; it does not influence the rest of the inductive
process, and in practice one can forget about it.

The fact that the Rim Equations R(p, ¢;s) are all satisfied is a little
bit more involved. We will first show, with induction on d (p, q), that for
any p,q,and s, with s on the chain from p to g the Rim Equations
R(p,q;5),R(s,p;q), and R{q,s;p) are satisfied. Because the three
cases are similar we will only consider the Rim Equation Ri{s,p:q).

Let m := min(p, q). If s = m then the Rim Equation R(s,p;a)
holds by definition modulo ¥, because of the definition of w(g, m: o),
and the ideal .¥. Now assume s # m. We may assume without loss
of generality that m € C(s, g). It follows from the coherence of the
minimum function that m = min(s, ¢).

We use the cocycle conditions C{g, s, m; p) and Clg,p,m;s) to

- rewrite w(q,s;p)y(g,p;s) as

wig, m; p)y(g, m;s)+w(g, m; p)y(m, p; s)
+y(m,s;p)y(g, m; s)+w(m,S;p)w(m,p;S)-

By induction we have T, =w(m,s;p)y(m,p;s) modulo .#. So we
have to show that

() 1= wig, m;p)y(q, m;sy+y(q, m; p)w(m,p;s)
+w(m,s;ply(g, m;s)=0

in (% /f {x}. Now by Lemma (4.8) below, none of the s is a zero-

divisor in (?!/f ){x}, so the proof of () is formally the same as in

2.9 )

( Fz)r the cdse that p, ¢, and s are not on 2 chain in the limit tree, take

m to be the centre of p, g, and s in the limit tree, and argue as above,
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using the fact that the Rim Equations are now known to hold for three
vertices on a chain in the limit tree. qg.e.d.
Lemma (4.8). Let % be a power series ring, ¥ C % an ideal, and

f= Zal,cxﬁc
be an element of (% [F){x}. If for some k a, is a unit of % |7 then f
is not a zero-divisor.
Progf. Let n bethe smallest number such that a, is a unit. Then one
can write
f=ux"+r
where u is aunit and deg (r) < n—1. Let g € (¥ /F){x} with f-g=0.
Then x"g = —u~'-r.g. From this it follows that g € 72, (x') =
0. qe.d '
Theorem (4.9). Let X be a rational surface singularity with reduced
fundamental cycle. Suppose we have chosen
e functions SM, p(p, q;r) € C{x} that satisfy the Rim Eguations
(2.2), such that X is described by the Canonical Equations (2.2).
s a limit tree T (1.12), with coherent minimum function min and
maximum function max (3.21).
e thering %, as in (4.3).
Let ¥ C¥%, Ty wp, q;r) € ¥{x} be defined as the result of the In-
ductive Process (4.6). Let % := Spec(Z |.7).
Then the family X5 — &, defined by the equations:

Qgp, q)i=2z,2,-T,=0,
z, —Z, =¥, q;7)
is a semi-universal deformation of X .

Proof. The above family is flat because of (2.1 1) and (4 7). This means
that one has

(%)
zmeQ(q’m)—zquﬁ(p! m)+!//(p, aq,; m)Q_g(p, Q') =10 mod .

We claim that the obstruction element of the family is equal to

ob=— > E,K(@p,q)
(7.q):{p.q} ¢ &(T)

where K(p, q) € T; are defined as in (3.22). For this we only have to
check that the values on the determining set of relations [p, g; m] & cyclic
(m =min(p, ¢)) are the same. So we have to calculate the expression (*)
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as element of .# /=7 . Asin the proof of (3.1) one sees that ()} is equal
to

Zu{Wp, m; Qyp,q;m) -1, }
~ Zpo v, m; Qwig, psm) -1, .}
+y(p, a;mHy(m,p; 9)y(m,q;p)-T,.}.
Because m =min(p, ¢) this expression is by definition equal to

szEQP + ququ

Similarly one sees that the values of ob on

lg,m;plis -z, E _+¢(m,q; P)E,, mod ».F ,

Im,p;qlis z B —@(m,p;q)E,, mod P

So from (3.22) it follows that the obstruction element is as claimed. Now
remark that E,, =0 for (p, q) afundamental pair. We know that (p, q)
is a fundamental pair exactly when ¢ = max({p, min(p, g)}). Hence the
injectivity of the obstruction map follows from the explicit bases of T
of (3.28) together with the remark that the degree of E,, Inx is smaller
than m(p,q). q.e.d.

Remark (4.10). The inductive process is not algorithmic in the sense
that Weierstrass division cannot be (a priori) done in a finite amount of
‘time. In case one has an algebraic representative of the singularity X,
lLe. the elements of &7, are polynomials, one can use the Mora normal
form instead of Weierstrass division in the inductive process (4.6). This
means that one works in the polynomial ring localized at . For any Tom
and ¥(p, g; m) in this localization one can find {constructively) elements

@, R, and kA €m such that

(1+mT, =Q¥p,q; m)+R

with deg (R) < m(p, q).

The proof that in this case one also finds a semi-universal deformation
is the same as above, if one uses the remark that an ideal generated by
coefficients of a power series does not change if one multiplies the power
series by a unit. )

Remark (4.11). Although the inductive process (4.6) gives a method
to compute the equations of the base space, it does not seem to be wise
to do so in examples. We did an example (simpler than Example {1.7)),
and got a computer output of about five pages, which of course we will not
reproduce here.
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In our opinion, however, the equations for the base space in explicit
form are not of importance at all; what matters is their interpretation in
terms of division with remainder.

In simple examples this interpretation enabled us to determine the num-
ber of components of the base space. We will study the question on the
number of components of the base space in a future article.
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