
On the values of functions which in

certain cases seem to be

undetermined *

Leonhard Euler

§355 If any function y of x was a fraction P
Q whose numerator and deno-

minator vanish at the same time for a certain value of x, then in this case
the fraction P

Q expressing the value of the function y will become = 0
0 ; since

this expression can become equal to any either finite or infinite or infinitely
small quantity, from it the value of y in this case cannot be concluded at all
and hence seems undetermined. Nevertheless, it is easily seen, since except
for in this case the function y always has a determined value, whatever is
substituted for x, that also in this case the value of y cannot be undetermined.
This will become obvious from the example y = aa−xx

a−x ; having put x = a it
will be y = 0

0 , of course. But because having divided the numerator by the
denominator it is y = a + x, it is evident, if one puts x = a, that it will be
y = 2a such that in this case that fraction 0

0 becomes equal to the quantity 2a.

§356 Therefore, since we showed above that 0
0 can express any number,

in examples of this kind a determined ratio which the numerator has to
the denominator has to be investigated. But because in absolute zeros this
diversity cannot be seen, instead of them infinitely small quantities have to be
introduced; even if they in their nature do not differ from zero, nevertheless
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from the different functions of them which constitute the numerator and the
denominator the value of the fraction becomes obvious immediately. So if
one has this fraction adx

bdx , even if indeed the numerator and the denominator
are = 0, it is nevertheless plain that the value of this fractions is determined,
namely = a

b . But if one has this fraction adx2

bdx , this value will be zero, as this
value of adx

bdx2 is infinitely large. Therefore, if we introduce infinitely small
quantities instead of the zeros which often enter the calculation, we will hence
be able to find the ratio which the zeros have to each other soon and no further
doubt about the meaning of expressions of this kind will remain.

§357 To render these things more clear, let us put that so the numerator
as the denominator of this fraction P

Q vanish, if one sets x = a. But to avoid
these zeros which cannot be compared to each other let us put x = a + dx,
which reduces to the first x = a because of dx = 0. But because, if one puts
x + dx instead of x, the functions P and Q go over into p + dP and Q + dQ,
this assumption x = a + dx will be justified, if in these values one sets x = a
everywhere, in which case we assumed P and Q to vanish. Hence, if one puts
a + dx instead of x, the fraction P

Q will be transformed into this one dP
dQ which

therefore expresses the value of the function y = P
Q in the case x = a. And

this expression cannot be undetermined any longer, if the true differentials of
the functions P and Q are taken as we taught in the preceding chapter. For,
this way the differentials dP and dQ never go over into absolutely zero, but,
if they are not expressed by means of the differential dx itself, will at least
be exhibited by means of its powers. Therefore, if one finds dP = Rdxm and
dQ = Sdxn, the value of the function y = P

Q in the case x = a will be = Rdxm

Sdxn

which will therefore be finite and = R
S , if it was m = n; but if it is m > n, then

the value of the fraction will indeed be = 0; but if m < n, this value grows to
infinity.

§358 Therefore, if a fraction P
Q of this kind occurs whose numerator and

denominator in the case, say x = a, vanish at the same time the value of this
fraction in this case x = a will be found by means if the following rule:

Find the differentials of the quantities P and Q in the case x = a and substitute them
for P and Q having done which the fraction dP

dQ will exhibit the value of the fraction
P
Q in question.

If the differentials dP and dQ found by means of the usual method become
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neither infinite nor vanish in the case x = a, then one can use them; but if both
become either = 0 or = ∞, then these differentials must be investigated by
means of the method explained in the preceding chapter in the case x = a. In
most cases the calculation is miraculously contracted, if one puts x− a = t or
x = a + t before, that a fraction P

Q results whose numerator and denominator
vanish in the case t = 0; for, then one will have the differentials dP and dQ, if
one substitutes dt for t everywhere.

EXAMPLE 1

Let the value of this fraction b−
√

bb−tt
tt be in question in the case t = 0.

Since in this case t = 0 both the numerator and the denominator vanish, only
write dt instead of t and the value in question will be expressed by means of
this fraction b−

√
bb−dt2

dt2 . But because it is
√

bb− dt2 = b− dt2

2b , this fraction goes

over into this one dt2

2bdt2 = 1
2b . Therefore, the propounded fraction b−

√
bb−tt
tt in

the case t = 0 has the value 1
2b .

EXAMPLE 2

Let the value of this fraction
√

aa+ax+xx−
√

aa−ax+xx√
a+x−

√
a−x be in question in the case x = 0.

Here, one can again immediately substitute dx for x; because, having done
this, it is

√
aa + adx + dx2 = a +

1
2

dx +
3dx2

8a
,√

aa− adx + dx2 = a− 1
2

dx +
3dx2

8a

and

√
a + dx =

√
a +

dx
2
√

a
,

√
a− dx =

√
a− dx

2
√

a
,
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the numerator will become = dx and the denominator = dx√
a , whence the

value in question of the propounded fraction will be =
√

a.

EXAMPLE 3

Let the value of this fraction x3−4ax2+7a2x−2a3−2a2
√

2ax−aa
xx−2ax−aa+2a

√
2ax−xx

be in question in the case
x = a.

If the differentials are taken in usual manner and they are substituted for the
numerator and denominator, one will have

3xx− 8ax + 7a2 − 2a3 :
√

2ax− aa
2x− 2a + 2a(a− x) :

√
2ax− xx

the numerator and denominator of which fraction vanish again, if one puts
x = a. Therefore, for the same reason substitute their respective differentials
again and this fraction will result

6x− 8a + 2a4 : (2ax− aa)
3
2

2− 2a3 : (2ax− xx)
3
2

,

whose numerator and denominator again vanish in the case x = a. Therefore,
we proceed to substitute their differentials for them

6− 6a5 : (2ax− aa)
5
2

6a3(a− x) : (2ax− xx)
5
2
=

1− a5 : (2ax− aa)
5
2

a3(a− x) : (2ax− xx)
5
2

.

But also both the numerator and the denominator vanish again here for x = a.
Therefore, further having substituted their differentials for them it will result

5a6 : (2ax− aa)
7
2

−(5a5 − 8a4x + 4a3xx) : (2ax− xx)
7
2

.

Now, finally put a instead of x and this determined fraction will result 5:a
−1:a2 =

−5a which is the value of the fraction in question.

But if, before this investigation is done, one puts x = a + t, the propounded
fraction will be transformed into this one

2a3 + 2a2t− att + t3 − 2a2
√

aa + 2at
−2aa + tt + 2a

√
aa− tt

;
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since this has the form 0
0 , if one puts t = 0, put dt instead of t and it will be

2a3 + 2a2dt− adt2 + dt3 − 2a2
√

aa + 2adt
−2aa + dt2 + 2a

√
aa− dt2

.

Now, convert the irrational formulas into series which must be continued
until the rational terms are not longer cancelled:

√
aa + 2adt = a + dt− dt2

2a
+

dt3

2aa
− 5dt4

8a3 ,

√
aa− dt2 = a− dt2

2a
− dt4

8a3 ;

having substituted these values this fraction will result

5dt4 : 4a
−dt4 : 4aa

= −5a

which is the value of the propounded fraction already found before.

EXAMPLE 4

To find the value of this fraction a+
√

2aa−2ax−
√

2ax−xx
a−x+

√
aa−xx in the case x = a.

Having substituted their differentials for the numerator and the denominator
this fraction will result which in the case x = a will be equal to the propounded
one:

−a :
√

2aa− 2ax− (a− x) :
√

2ax− xx
−1− x :

√
aa− xx

whose numerator and denominator in the case x = a become infinite. But if
both are multiplied by −

√
a− x, one will have

a :
√

2a + (a− x)
3
2 :
√

2ax− xx√
a− x + x :

√
a + x

which having put x = a will give the determined value a:
√

2a
a:
√

2a
= 1 which is

therefore equal to the propounded fraction in the case x = a.
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§359 Therefore, if one has a fraction P
Q whose numerator and denominator

vanish in the case x = a, one will be able to assign its value by means of the
usual rules of differentiation and it will not be necessary to go back to the
differentials which we treated in the preceding chapter. For, having taken
the differentials the propounded fraction P

Q in the case x = a will become
equal to the fraction dP

dQ ; if its numerator and denominator take on finite
values for x = a, one will find the value of the propounded fraction; but if
the one becomes = 0 while the other remains finite, then the fraction will be
either = 0 or = ∞, depending on whether the numerator or the denominator
vanishes. But if one of the two or even both become = ∞, what happens, if
one divides by quantities vanishing in the case x = a, then by multiplying
both by these divisors the inconveniences is removed as it happened in the
preceding example. But if so the numerator as the denominator vanish again,
then just, as it was done in the beginning, the differentials are to be taken once
more such that this fraction ddP

ddQ results which in the case x = a will still be
equal to the propounded one; and if the same happens again in this fraction
that it becomes = 0

0 , then substitute this one d3P
d3Q for it and so forth, until one

reaches a fraction which exhibits a determined value, either finite or infinitely
large or infinitely small. So in the third example it was necessary to proceed to
the fraction d4P

d4Q before it was possible to assign the value of the propounded

fraction P
Q .

§360 The use of this investigation becomes clear in the definition of the sums
of series which we found above (chap. II § 22), if one outs x = 1. For, from the
results that were derived there it follows that it will be:
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x + x2 + x3 + · · ·+ xn =
x− xn+1

1− x

x + x3 + x5 + · · ·+ x2n−1 =
x− x2n+1

1− xx

x + 2x2 + 3x3 + · · ·+ nxn =
x− (n + 1)xn+1 + nxn+2

(1− x)2

x + 3x3 + 5x5 + · · ·+ (2n− 1)x2n−1 =
x + x3 − (2n + 1)x2n+1 + (2n− 1)x2n+3

(1− xx)2

x + 4x2 + 9x3 + · · ·+ n2xn =
x + x2 − (n + 1)xn+1 + (2nn + 2n− 1)xn+2 − nnxn+3

(1− x)3

etc.

If now the sums of these series are desired in the case x = 1, in these
expressions so the numerator as the denominator vanish. Therefore, the
values of these sums in the case x = 1 can be defined by means of the method
explained here. Since the same sums are known from elsewhere, from the
agreement with those known values the validity of this method will become
more clear.

EXAMPLE 1

To define the value of this fraction x−xn+1

1−x in the case x = 1 which will exhibit the sum
of the series 1 + 1 + 1 + · · ·+ 1 consisting of n terms which therefore will be = n.

Since in the case x = 1 the numerator and the denominator vanish, substitute
their differentials for them and one will have

1− (n + 1)xn

−1
,

which for x = 1 gives n for the sum of the series in question.

EXAMPLE 2

To define the value of the fraction x−x2n+1

1−xx in the case x = 1 which will exhibit the
sum of the series 1 + 1 + 1 + · · · 1 consisting of n terms which will therefore be = n.

Having taken the differentials the propounded fraction will be transformed
into this one
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1− (2n + 1)x2n

−2x
whose value having put x = 1 will be = n.

EXAMPLE 3

To find the value of this fraction x−(n+1)xn+1+nxn+2

(1−x)2 in the case x = 1 which will
express the sum of the series 1 + 2 + 3 + · · ·+ n which is known to be = nn+n

2 .

Having taken the differentials one gets to this fraction

1− (n + 1)2xn + n(n + 2)xn+1

−2(1− x)
,

whose numerator and denominator still vanish in the case x = 1. Therefore,
take the differentials again so that this fraction results

−n(n + 1)2xn−1 + n(n + 1)(n + 2)xn

2
,

which having put x = 1 goes over into n(n+1)
2 = nn+n

2 the sum of the propoun-
ded series.

EXAMPLE 4

To find the value of this fraction x+x3−(2n+1)x2n+1+(2n−1)x2n+3

(1−xx)2 in the case x = 1 which
will express the sum of the series 1 + 3 + 5 + · · ·+ (2n− 1) which is known to be
= nn.

Having substituted the differentials for the numerator and the denominator
this fraction results

1 + 3xx− (2n + 1)2x2n + (2n− 1)(2n + 3)x2n+2

−4x(1− xx)
;

because this still has the same inconvenience that it goes over into = 0
0 for

x = 1, take the differentials again

6x− 2n(2n + 1)2x2n−1 + (2n− 1)(2n + 2)(2n + 3)x2n+1

−4 + 12xx
,

which for x = 1 goes over into
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6− 2n(2n + 1)2 + (2n− 1)(2n + 2)(2n + 3)
8

= nn.

EXAMPLE 5

To find the value of this fraction

x + x2 − (n + 1)2xn+1 + (2nn + 2n− 1)xn+2 − nnxn+3

(1− x)3

in the case x = 1 which will give the sum of the series 1 + 4 + 9 + · · ·+ n2 which is
known to be = 1

3 n3 + 1
2 n2 + 1

6 n.

Having taken the differentials of the numerator and the denominator it will
be

1 + 2x− (n + 1)3xn + (n + 2)(2nn + 2n− 1)xn+1 − nn(n + 3)xn+2

−3(1− x)2

since in it the numerator and the denominator for x = 1 vanish again, take
the second differentials

2− n(n + 1)3xn−1 + (n + 1)(n + 2)(2nn + 2n− 1)xn − n2(n + 2)(n + 3)xn+1

6(x− 1)
.

Since the same inconvenience is still present here, proceed to the third diffe-
rentials that this fraction results

−n(n− 1)(n + 1)xn−2 + n(n + 1)(n + 2)(2nn + 2n− 1)xn−1 − n2(n + 1)(n + 2)(n + 3)xn

−6

which for x = 1 finally goes over into this determined form

−n(n− 1)(n + 1)3 + n(n + 1)(n + 2)(nn− n− 1)
−6

=
n(n + 1)(2n + 1)

6
=

1
3

n3 +
1
2

n2 +
1
6

n;

which is the value we found to express the mentioned series.
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EXAMPLE 6

Let this fraction be propounded xm−xm+n

1−x2p whose value in the case x = 1 is to to be
assigned.

Since this fraction is the product of these two xm

1+xp · 1−xn

1−xp , but the value of the
first factor in the case x = 1 is = 1

2 , it is only necessary that the value of the
other factor 1−xn

1−xp in the same case is found which having taken the differentials

will be = nxn−1

pxp−1 = n
p ; therefore, the value of the propounded fraction in the

case x = 1 will be = n
2p . The same value results, if the differentials are taken

immediately in the propounded fraction; for, it will be

mxm−1 − (m + n)xm+n−1

−2px2p−1 ,

whose value having put x = 1 will be = −n
−2p = n

2p as before.

§361 The same method is to be used, if in the propounded fraction P
Q either

the numerator or the denominator or both were a transcendental number. That
these operations are better explained, it seems advisable to add the following
examples.

EXAMPLE 1

Let this fraction be propounded an−xn

ln a−ln x whose value in the case x = a is in question.

Having taken the differentials one immediately gets to this form

−nxn−1

−1 : x
= nxn

whose value for x = a will be nan.

EXAMPLE 2

Let this fraction be propounded ln x√
1−x

whose value in the case x = 1 is in question.

Having taken the differentials of the numerator and the denominator this
fraction results

1 : x
−1 : 2

√
1− x

=
−2
√

1− x
x

;
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since its value for x = 1 is = 0, it follows that the fraction ln x√
1−x

vanishes in
the case x = 1.

EXAMPLE 3

Let this fraction be propounded a−x−a ln a−a ln x
a−
√

2ax−xx
whose value for x = a is in question

in which case the numerator and the denominator vanish.

Having differentiated the numerator and denominator according to the rule it
will be

−1 + a : x
−(a− x) :

√
2ax− xx

=
(a− x)

√
2ax− xx

−x(a− x)
;

even if here the numerator and the denominator still vanish in the case
x = a, nevertheless, since both are divisible by a − x, one will have this

fraction −
√

2a−x
x whose value in the case x = a is determined and = −1; and

therefore, the propounded fraction goes over into −1, if one puts x = a.

EXAMPLE 4

Let this fraction be propounded ex−e−x

ln(1+x) whose value for x = 0 is in question.

Having taken the differentials one will have this fraction

ex + e−x

1 : (1 + x)

which for x = 0 gives 2 for the value in question.

EXAMPLE 5

To find the value of this fraction ex−1−ln(1+x)
xx in the case in which one puts x = 0.

If their differentials are substituted for the numerator and the denominator,
this fraction will result

ex − 1 : (1 + x)
2x

,

since which goes over into 0
0 , if one puts x = 0, take the differentials again

that one has

11



ex + 1 : (1 + x)2

2

which for x = 0 yields 1+1
2 = 1. The same is plain, if one immediately

substitutes 0 + dx instead of x, because it is

edx = 1 + dx +
1

2dx2 + etc. and ln(1 + dx) = dx− 1
2

dx2 + etc.,

eln x − 1− ln(1 + dx)
dx2 =

dx2

dx2 = 1.

EXAMPLE 6

Let the value of the fraction xn

ln x in the case in which one puts x = ∞ be in question.

To reduce this fraction to a form which in this case goes over into 0
0 represent

it this way

1 : ln x
1 : xn ;

for, this in the case x = ∞ so the numerator as the denominator will vanish.
Further, put x = 1

y such that in the case x = ∞ it is y = 0, and this fraction is
propounded

−1 : ln y
yn

whose value in the case y = 0 must be investigated. But having taken the
differentials it will be 1:y(ln y)2

nyn−1 = 1:(ln y)2

nyn ; since for y = 0 it goes over into
0
0 , take the differentials again and it will be −2:(ln y)3

n2yn ; since here the same

inconvenience is present, if the differentials are taken again, 6:(ln y)4

n3yn will result
and so, no matter how far we proceed, always the same inconvenience occurs.
Therefore, to find the value in question despite this obstacle, let s be the value
of the fraction − 1:ln y

yn in the case in which one puts y = 0, and because in the
same case it also is

s =
1 : (ln y)2

nyn ,
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from that equation it will be

ss =
1 : (ln y)2

y2n

which divided by the latter will give

s =
nyn

y2n =
n
yn ,

from which it is understood that in the case y = 0 s becomes infinite. Therefore,
the value of the fraction − 1:ln y

yn in the case y = 0 will be infinite and for y = dx
1

ln dx will have an infinite ratio to dxn as we mentioned already above [§ 351].

EXAMPLE 7

Let the value of the fraction xn

e−1:x be in question in the case x = 0 in which both the
numerator and the denominator vanish.

Let xn

e−
1
x
= s in this case; therefore, having taken the differentials it will also be

s =
nxn−1

e−1:x : xx
=

nxn+1

e−1:x ,

and since here the same inconvenience occurs and always occurs again, no
matter how far the differentiations are continued, we argue exactly as before.
The first equation gives

xn = e−1:xs and xn(n+1) = e−(n+1):xsn+1;

the other equation gives

xn+1 = e−1:xs : n,

whence it is

xn(n+1) = e−n:xsn : nn,

which value equated to the latter will give

e−1:xsnn = 1

and hence
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s =
1

nne−1:x = ∞,

if x = 0. Therefore, having put x to be infinitely small dxn will have an
infinitely large ratio to e−1:dx, no matter which finite number is substituted for
n; therefore, it follows that e−1:dx is infinitely small and homogeneous to dxm,
if m was an infinitely large number.

EXAMPLE 8

Let the value of the fraction 1−sin x+cos x
sin x+cos x−1 in the case in which one puts x = π

2 or equal
to the arc of 90◦ be in question.

Having taken the differentials one will obtain this fraction

− cos x− sin x
cos x− sin x

which having put x = π
2 because of sin x = 1 and cos x = 0 goes over into 1

such that 1 is the value in question of the propounded fraction. The same is
obvious without differentiation; for, since it is cos x =

√
(1 + sin x)(1− sin x),

the propounded fraction goes over into this one
√

1− sin x +
√

1 + sin x√
1 + sin x−

√
1− sin x

which evidently becomes = 1, if sin x = 1..

EXAMPLE 9

To find the value of this expression xx−x
1−x+ln x in the case in which one puts x = 1.

Having substituted their differentials for the numerator and the denominator
this fraction will result

xx(1 + ln x)− 1
−1 + 1 : x

;

since this also becomes = 0
0 for x = 1, take the differentials again that this

fraction results

xx(1 + ln x)2 + xx : x
−1 : xx
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which having put x = 1 goes over into −2 which is the value of the propoun-
ded fraction in the case x = 1.

§362 Since here we decided to treat all expressions which in certain cases
seem to have undetermined values, not only those fractions P

Q whose numera-
tor and denominator vanish in certain cases extend to this, but also fractions
of such a kind whose numerator and denominator in a certain case become
infinite are to be included, since their values also seem to be undetermined. If
P and Q were functions of x of such a kind that in a certain case x = a both
become infinite and the fraction P

Q takes on this form ∞
∞ , since two infinities as

two zeros can have any ratio to each other, hence the value cannot be known
at all. This case can be reduced to the preceding by transforming the fraction
P
Q into this form 1:Q

1:P the numerator and denominator of which fraction now
vanish in the case x = a; and hence its value can be found by means of the
method discussed before. But even without this transformation the value
will be found, if not a but a + dx is substituted for x; having done this not
an absolute infinity ∞ will result, but it will be expressed as 1

dx or A
dxn ; even

if these expressions are equally infinite as ∞, nevertheless having done the
comparison of dx to its powers the value in question will easily be calculated.

§363 Also the products consisting of two factors of which the one in the
certain case x = a vanishes, but the other goes over into infinity extend to
the same class; for, since every quantity can be represented by a product of
this kind 0 ·∞, its value seems to be undetermined. Let PQ be a product of
this kind in which, if one puts x = a, it is P = 0 and Q = ∞; its value will
be found by means of the rules given before, if one puts Q = 1

R ; for, then
the product PQ will be transformed into the fraction P

R whose numerator
and denominator both vanish in the case x = a; and hence its value can be
investigated by means of the method explained before.

So, if the value of this product

(1− x) tan
πx
2

in the case x = 1, in which it is 1− x = 0 and tan πx
2 = ∞, is in question,

convert it into this fraction

1− x
cot 1

2 πx
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whose numerator and denominator vanish in the case x = 1. Therefore,
since the differential of the numerator is 1− x = −dx and the differential
of the denominator cot πx

2 = − πdx:2
(sin 1

2 πx)2 , in the case x = 1 the value of the

propounded fraction will be

=
2
π

sin
πx
2
· sin

πx
2

=
2
π

because of sin π
2 = 1.

§364 But especially those expressions which, if a certain value is attributed
to x, go over into ∞−∞ are included here; for, since two infinities can differ
by any finite quantity, it is obvious that in this case the value of the expression
is not determined, if the difference of those two infinities cannot be assigned.
Therefore, this case occurs, if a function P−Q of this kind is propounded in
which for x = a it is so P = ∞ as Q = ∞, in which case by means of the rules
given before the value in question can not be assigned that easily. For, even if,
having put that it this case it is P−Q = f , one sets eP−Q = e f such that it is
e f = e−Q

e−P where in the case x = a so the numerator e−Q as the numerator e−P

vanishes, if the rule given before is applied here, it will be e f = e−QdQ
e−PdP , whence

because of e f = e−Q

e−P it would be 1 = dQ
dP and hence the value in question of f

will not be found from this. If P and Q are algebraic quantities, since these
only become infinite, if there are fractions whose denominators vanish, then
P − Q can be contracted into one single fraction whose denominator will
vanish in the same way. If having done this the numerator vanishes, the value
will be defined by means of the method explained above; but if the numerator
does not vanish, then its value will indeed be infinite.

So if the value of this expression

1
1− x

− 2
1− xx

is desired in the case x = 1, since it goes over into

−1 + x
1− xx

=
−1

1 + x
,

it is plain that value in question is = − 1
2 .
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§365 But if the functions P and Q were transcendental, then this transforma-
tion would lead to most cumbersome calculations in most cases. Therefore,
it will be convenient that in these cases a direct method is used and instead
of x = a, in which case both quantities P and Q go over into infinity, it is
put x = a + ω while ω is an infinitely small quantity, for which one can take
dx. If having done this it is P = A

ω + B and Q = A
ω + C, it is obvious that the

function P−Q will go over into B− C which value will be finite. Therefore,
we will illustrate this method to investigate values of functions of this kind in
the following examples.

EXAMPLE 1

Let the value of this expression x
x−1 −

1
ln x be in question in the case in which one puts

x = 1.

Since so x
x−1 as 1

ln x become infinite for x = 1, put x = 1 + ω and the propoun-
ded expression will be transformed into this one

1 + ω

ω
− 1

ln(1 + ω)
.

Therefore, since it is

ln(1 + ω) = ω− 1
2

ω2 +
1
3

ω3 − etc. = ω

(
1− 1

2
ω +

1
3

ω2 − etc.
)

,

one will have

(1 + ω)(1− 1
2 ω + 1

3 ω2 − etc.)

ω(1− 1
2 ω + 1

3 ω2 − etc.)
=

1
2 ω− 1

6 ω2 + etc.

ω
(
1− 1

2 ω + 1
3 ω2 − etc.

) =
1
2 −

1
6 ω + etc.

1− 1
2 ω + 1

3 ω2 − etc.
.

Now, having put ω to be infinitely small or ω = 0 it is obvious that the value
in question = 1

2 .

EXAMPLE 2

While e denotes the number whose hyperbolic logarithm is = 1 and π the half of
the circumference of the circle whose radius is = 1, to investigate the value of this
expression πx−1

2xx + π
x(e2πx−1) in the case x = 0.

17



This expression exhibits the sum of this series

1
1 + xx

+
1

4 + xx
+

1
9 + xx

+
1

16 + xx
+

1
25 + xx

+ etc.;

hence, if one puts x = 0, the sum of this series must result

1
1
+

1
4
+

1
9
+

1
16

+ etc.

which is known to be = ππ
6 . But having put x = 0 the value of the propounded

expression

πx− 1
2xx

+
π

x(e2πx − 1)

seems to be most undetermined because of all the infinite terms. Therefore,
put x = ω while ω denotes an infinitely small quantity and the first term
πx−1
2xx goes over into

− 1
2ω

2
+

π

2ω
.

Further, since it is

e−2πω − 1 = 2πω + 2π2ω2 +
4
3

π3ω3 + etc.,

the other side π
x(e2πx−1) goes over into

π

ω(2πω + 2π2ω2 + 4
3 π3ω3) + etc.

=
1

2ω2(1 + πω + 2
3 π2ω2 + etc.)

.

But it is

1
1 + πω + 2

3 π2ω2 + etc.
= 1− πω +

1
3

π2ω2 − etc.,

whence the second term becomes

=
1

2ω2 −
π

2ω
+

1
6

π2 − etc.;

if to this the first is added, 1
6 π2 results which is the value in question of the

propounded expression in the case x = 0.
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The same can also be achieved by means of the method of fractions whose
numerator and denominator vanish in a certain case; for, the propounded
expression is transformed into this fraction

πxe2πx − e2πx + πx + 1
2xxe2πx − 2xx

whose numerator and denominator vanish in the case x = 0. Therefore, having
taken the differentials this fraction results

πe2πx + 2ππxe2πx − 2πe2πx + π

4xe2πx + 4πxxe2πx − 4x
or this one

π − πe2πx + 2ππe2πx

4xe2πx + 4πxxe2πx − 4x
whose numerator and denominator still vanish, if one puts x = 0. Therefore,
having taken the differentials again one will have

−2ππe2πx + 2ππe2πx + 4π3xe2πx

4e2πx + 8πxe2πx + 8πxe2πx + 8π2xxe2πx − 4
or

π3xe2πx

e2πx + 4πxe2πx + 2π2x2e2πx − 1
or

π3x
1 + 4πx + 2π2x2 − e−2πx

whose numerator and denominator still vanish in the case x = 0. Therefore,
take the differentials again

π3

4π + 4π2x + 2πe−2πx

which fraction for x = 0 goes over into π2

6 as before.
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EXAMPLE 3

While e and π retain the same values, let the value of this expression be in question in
the case x = 0.

π

4x
− π

2x(eπx + 1)
.

This expression is transformed into this one

πeπx − π

4xeπx + 4x
whose numerator and denominator vanish in the case x = 0. Therefore, put
x = ω, and because it is

eπω = 1 + πω +
1
2

π2ω2 +
1
6

π3ω3 + etc.,

the propounded formula is transformed into this one

π2ω + 1
2 π3ω2 + 1

6 π4ω3 + etc.
8ω + 4πω2 + 2π2ω3 + etc.

which having put ω to be infinitely small immediately gives 1
8 π2 which is

the value in question of the propounded expression in the case x = 0. For,
the propounded expression π

4x −
π

2x(eπx+1) will indeed exhibit the sum of this
series

1
1 + xx

+
1

9 + xx
+

1
25 + xx

+
1

49 + xx
+ etc.

whose sum for x = 0 gives = 1
8 π2.

EXAMPLE 4

To find the value of this expression 1
2xx −

π
2x tan πx in the case x = 0.

This propounded formula 1
2xx −

π
2x tan πx expresses the sum of this infinite

series

1
1− xx

+
1

4− xx
+

1
9− xx

+
1

16− xx
+ etc.

If one therefore puts x = 0, the sum of the series

20



1 +
1
4
+

1
9
+

1
16

+ etc.

results which is = 1
6 ππ. Since it is tan π = sin πx

cos πx , the propounded expression
will take on this form

1
2xx
− π cos πx

2x sin πx
=

sin πx− πx cos πx
2xx sin πx

whose numerator and denominator vanish in the case x = 0. Therefore, put
x = ω, and because it is

sin πω = πω− 1
6

π3ω3 + etc., cos πω = 1− 1
2

π2ω2 + etc.,

the propounded expression will be

πω− 1
6 π3π3 + etc.− πω + 1

2 π3ω3 − etc.

2πω3 − 1
3 π3ω5 + etc.

=
1
3 π3ω3 − etc.
2πω3 − etc.

which because of the infinitely small ω gives 1
6 π2.

EXAMPLE 5

Since the sum of this infinite series is known, it is

1
1− xx

+
1

9− xx
+

1
25− xx

+
1

49− xx
+ etc. =

π sin 1
2 πx

4x cos 1
2 πx

,

to find its sum, if it was x = 0.

Since it is

sin
1
2

πx =
1
2

πx− 1
48

π3x3 + etc. and cos
1
2

πx = 1− 1
8

π2x2 + etc.,

the propounded expression will be

=
1
2 π2x− 1

48 π4x3 + etc.

4x− 1
2 π2x3 + etc.

=
1
2 π2 − 1

48 π4x2 + etc.

4− 1
2 π2x2 + etc.

;

if in this x = 0, the value will obviously be = 1
8 π2 which is the sum of the

series
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1 +
1
9
+

1
25

+
1

49
+ etc.

as it was demonstrated above in several ways. But if one takes any even
number for x, the sum of the propounded series is always = 0.

§366 In these series we treated in the last two examples and containing the
variable letter x one can attribute values of such a kind to x that certain terms
grow to infinity in which cases the sum of the whole series will be infinite. So,
one term of the series

1
1− xx

+
1

4− xx
+

1
9− xx

+
1

16− xx
+ etc.,

if one substitutes any integer for x, because of the vanishing denominator
always becomes infinite and therefore the series itself will become infinite. But
if this infinite term is thrown out of the series, then the remaining sum will
without any doubt be finite and will be expressed by means of the first series
decreased by this infinite term in this way ∞−∞; therefore, one will be able
to find determined value, which will be seen more clearly from the examples
added below.

EXAMPLE 1

To find the sum of the series

1
1− xx

+
1

4− xx
+

1
9− xx

+
1

16− xx
+ etc.

in the case x = 1 and having subtracted the first term which in this case will be
augmented to infinity.

Since the sum in general is

=
1

2xx
− π

2x tan πx
,

the sum in question will be

=
1

2xx
− π

2x tan πx
− 1

1− xx
for x = 1. Let x = 1 + ω and for the sum in question one will have
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1
2(1 + 2ω + ωω)

− π

2(1 + ω) tan(π + ωπ)
+

1
2ω + ωω

.

But it is

tan(π + ωπ) = tan ωπ = πω +
1
3

π3ω3 + etc.

therefore, because the first term 1
2xx for x = 1 has the determined value 1

2 ,
only the remaining terms are to be considered which will be

1
ω(2 + ω)

− π

2ω(1 + ω)(π + 1
3 π3ω2)

=
1

ω(2 + ω)
− 1

ω(2 + 2ω)(1 + 1
3 π2ω2)

,

if ω is infinitely small in which case the term 1
3 π2ω2 can be neglected. But it is

ω

ω(2 + ω)(2 + 2ω)
=

1
4

for ω = 0 and therefore 1
2 +

1
4 = 3

4 is the sum of the series

1
3
+

1
8
+

1
15

+
1
24

+ etc.

as it is known from elsewhere.

EXAMPLE 2

To find the sum of the series

1
1− xx

+
1

4− xx
+

1
9− xx

+
1

16− xx
+ etc.

in the case in which one substitutes any integer n for x and omits the term 1
nn−xx of

the series which would become infinite.

Therefore, this sum which is in question will be expressed this way

1
2xx
− π

2x tan πx
− 1

nn− xx
,

if one sets x = n, in which case the first term 1
2xx goes over into 1

2nn , the two
remaining ones on the other hand remain infinite. Therefore, put x = n + ω,
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and because it is tan(πn + πω) = tan πω = πω for infinitely small ω, for the
sum in question we will have

1
2nn
− π

2(n + ω)πω
+

1
2nω + ωω

or

1
2nn
− 1

ω(2n + 2ω)
+

1
ω(2n + ω)

=
1

2nn
+

1
(2n + 2ω)(2n + ω)

,

whence, if it was ω = 0, the sum in question will result as

=
1

2nn
+

1
4nn

=
3

4nn
.

Therefore, it will be

3
4nn

=
1

1− nn
+

1
4− nn

+
1

9− nn
+ · · ·+ 1

(n− 1)2 − nn

+
1

(n + 1)2 − nn
+

1
(n + 2)2 − nn

+ etc. to infinity

or the sum of this series will be infinite

1
(n + 1)2 − nn

+
1

(n + 2)2 − nn
+

1
(n + 3)2 − nn

+ etc.

=
3

4nn
+

1
nn− 1

+
1

nn− 4
+

1
nn− 9

+ · · ·+ 1
nn− (n− 1)2 .

EXAMPLE 3

To find the sum of this series

1
1− xx

+
1

9− xx
+

1
25− xx

+
1

49− xx
+ etc.,

if one puts x = 1 and the first term 1
1−xx which in this case becomes infinite is

subtracted.

Since the sum of this series in general is =
π sin 1

2 πx
4x cos 1

2 πx
, the sum in question will

be
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=
π sin 1

2 πx
4x cos 1

2 πx
− 1

1− xx
,

if one puts x = 1. Since both of these terms become infinite, put x = 1− ω,
and because it is

sin
(

1
2

π − 1
2

πω

)
= cos

1
2

πω = 1− 1
8

π2ω2

and

cos
(

1
2

π − 1
2

πω

)
= sin

1
2

πω =
1
2

πω

because of the infinitely small ω, one will have this expression

π(1− 1
8 π2ω2)

4(1−ω) 1
2 πω

− 1
2ω−ωω

=
1

2ω(2− 2ω)
− 1

ω(2−ω)

which becomes = 1
4 for ω = 0, and therefore it is

1
4
=

1
8
+

1
24

+
1

48
+

1
80

+
1

120
+ etc.

EXAMPLE 4

To find the sum of this series

1
1− xx

+
1

9− xx
+

1
25− xx

+
1

49− xx
+ etc.,

if one substitutes any odd integer 2n− 1 for x and this term 1
(2n−1)2−xx which in this

case becomes infinite is subtracted.

Therefore, the sum which is in question will be

=
π sin 1

2 πx
4x cos 1

2 πx
− 1

(2n− 1)2 − xx

for x = 2n− 1. Therefore, let us set x = 2n− 1−ω while ω is infinitely small
and it will be

sin
1
2

πx = sin
(

2n− 1
2

π − 1
2

πω

)
= ± cos

1
2

πω,
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where the upper sign holds, if n is an odd number, the lower, if it is even. In
like manner it will be

cos
1
2

πx = cos
(

2n− 1
2

π − 1
2

πω

)
= ± sin

1
2

πω;

and hence, no matter whether n is even or odd, it will be

sin 1
2 πx

cos 1
2 πx

=
1

tan 1
2 πω

=
1

1
2 πω

.

Therefore, the sum in question will be expressed this way

1
2ω(2n− 1−ω)

− 1
ω(2(2n− 1)−ω)

and therefore will be = 1
4(2n−1)2 . So, if it n = 2, it will be

1
36

= −1
8
+

1
16

+
1
40

+
1

72
+

1
112

+ etc.

the validity of which summation is known from elsewhere.
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