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Introduction 1

The main goal of this talk is to describe a method to compute
eigenvalues of paramodular forms of weight 3.

In fact I will explain how to use neighbouring lattice methods
to construct spaces of algebraic modular forms for orthogonal
groups together with their Hecke operators.

For a presentation of orthogonal modular forms oriented
towards computation see the Ph.D. thesis of Jeffery Hein
(student of John Voight).
For the particular case of SO(5), see the Ph.D. thesis of
Watson Ladd (student of Kenneth Ribet)
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Introduction 2

I For SO(3) orthogonal modular forms lift to classical
modular forms of weight ≥ 2
This is well known, by lifting to quaternionic modular forms
(i.e. Brandt matrices) and using the Eichler correspondence
(aka Jacquet-Langlands). This involves the fact that Spin(3)
is a group of quaternions and an inner form of SL(2).

I For SO(5) orthogonal modular forms should lift to
paramodular forms of weight ≥ 3
This is conjectural: since Spin(5) is an inner form of Sp(2) it
is fair to expect that quinary orthogonal modular forms
correspond to Siegel modular forms of degree 2.
In this way, I learned from Hein and Voight, one can easily
construct eigenvalues of paramodular forms of weight 3
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Introduction 3

The objects of interest

I On the motivic side:
Four-dimensional Galois representations of weight 3
of Calabi-Yau type (Hodge numbers 1,1,1,1)

I On the automorphic side:
Automorphic forms for GSp(2), e.g.
I Siegel modular forms of degree 2 and weight 3
I Paramodular forms of weight 3
I Algebraic modular forms for SO(5)

Some computational problems:
1. Find such objects
2. Compute their L-functions
3. Do an exhaustive enumeration
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Introduction 4

Related theoretical problems

1. Understand the correspondence between the motivic and
automorphic sides

For instance: given a paramodular form (of general type) there
is a corresponding `-adic Galois representation (due to Taylor,
Laumon, Weissauer, Schmidt, Mok, ...).
Thus, if one were to find a matching CY 3-fold it would in
principle be possible to prove its modularity by proving the two
Galois representations are isomorphic using Faltings-Serre.
See BPPTVY where we make this idea feasible for GSp(2) and use
it to prove the modularity of some abelian surfaces.
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Introduction 5

Related theoretical problems

2. Understand the relation between paramodular forms of
weight 3 and algebraic modular forms for SO(5)

See Rainer comments in the project pre-proposal. From a
computational point of view on the automorphic side this is
quite important since it seems much easier to compute
algebraic modular forms for SO(5) than paramodular forms.
(cf. Ibukiyama’s Conjecture, see Ibukiyama-Kitayama)
However, I don’t know how to recover the Fourier coefficients of
the paramodular form from the orthogonal modular form.
It would be most interesting to find an explicit lifting, since the
Fourier coefficients of paramodular forms are related to the central
values of their twisted L-functions (similar to Waldspurger’s
formula, see my work with Ryan)
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Quaternionic modular forms 6

Let R be an order in a definite quaternion algebra over Q.
A quaternionic modular form of level R is a function on the
(finite) set of left R-ideal classes:

M(R) = {ϕ : Cl(R) → C}

There is an action of Hecke operators on this space given by

tmϕ([I ]) =
∑
J⊂I

N(J)=m N(I)

ϕ([J ])

This action is classically given by Brandt matrices, which are
easy to compute, and can be expressed in terms of
representation numbers of quaternary quadratic forms.
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Quaternionic modular forms 7

Eichler correspondence

Suppose ϕ ∈M(R) is a quaternionic eigenform, then∑
m≥0
〈tmϕ,ϕ〉 qm

is a classical eigenform of weight 2 with the same eigenvalues.

In fact (ϕ,ψ) 7→ ∑
m≥0 〈tmϕ,ψ〉 qm defines a Hecke-bilinear

pairing (Eichler commuting relations). In the standard basis
([I ], [J ]) maps to the theta series of the quaternary lattice IJ−1.
Hence the expression is a linear combination of theta series.
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Quaternionic modular forms 8

Eichler correspondence

This provides a lifting from quaternionic modular forms to
classical modular forms which was used by Eichler for his work
on the basis problem.

I This is a (provable) way to construct classical eigenforms.
I A more difficult problem is to know which classical

eigenforms will arise in this way.
For this Eichler developed and used trace formulas.

I This is a precursor to Jacquet-Langlands correspondence.
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Orthogonal modular forms 9

Let L be a positive definite lattice of dimension n.
An orthogonal modular form of level L is a function on the
(finite) set of equivalence classes of lattices in the genus of L:

M(L) = {ϕ : gen(L) → C}

There is an action of Hecke operators on this space given by
neighbouring operators, for instance:

tp,1ϕ([Λ]) =
∑

[Λ:Λ∩Π]=[Π:Λ∩Π]=p

ϕ([Π])

A key step in the computation of the neighbouring operators is
testing for isometry of lattices. In some cases a reduction
theory is available (e.g. Eisenstein reduction for n = 3).
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Orthogonal modular forms 10

SO(3)

In the case of n = 3 orthogonal modular forms lift to classical
modular forms of weight 2, and this is well-studied.
In fact given a quadratic space V of dimension 3 one can
construct a quaternion algebra D (the even Clifford algebra)
such that SO(V ) ' D×/Q×. From this is not difficult to
relate algebraic modular forms for SO(V ) with algebraic
modular forms for D× (Ponomarev, Schulze-Pillot, Hein).
Birch used this in 1988 for computations. A limitation of this
is that, in principle, it will compute only modular forms with
sign +1 in the functional equation. To avoid this issue one
needs to use characters of the spinor norm as I showed in my
thesis (see also recent work with Hein and Voight, in progress).
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Orthogonal modular forms 11

SO(3): half-integral weight modular forms

Using theta series one can define a Hecke-linear map

θ : M(L) → M3/2(NL)

This (almost) gives an explicit lifting. Moreover the Fourier
coefficients of the weight 3/2 modular forms are related to the
central values of twisted L-functions by Waldspurger.
However, theta series have linear relations which correspond to
vanishing of the central value of L-functions, which means the
lifting to weight 2 does not in general factor through this map.
One can avoid this issue by using generalized theta series (see
my recent work with Sirolli)
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SO(5) and paramodular forms 12

Ibukiyama conjecture

In the case of n = 5 we have SO(5) ' USp(2)/{±1}, where
USp(2) is a compact twist of Sp(2).
A precise analogue for USp(2) of Eichler-Jacquet-Langlands
correspondence was conjectured by Ibukiyama (for prime
levels, and later by Ibukiyama-Kitayama for squarefree levels).
Thus it is expected that quinary orthogonal modular forms lift
to paramodular forms of weight 3, but unlike the case of n = 3
no explicit lifting is known so far.
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SO(5) and paramodular forms 13

Half-integral weight modular forms
As before one can define a Hecke-linear map

θ : M(L) → M5/2(NL)

to modular forms of weight 5/2. Those map to modular forms
of weight 4 by Shimura correspondence, and then Gritsenko
lifting provides a map to paramodular forms of weight 3.

This is NOT the lifting we want!
Indeed, by definition, this yields only Gritsenko lifts. However,
the interesting part of the space of paramodular forms are the
non-lifts (i.e. eigenforms outside the space of Gritsenko lifts).

Actually: because L is positive definite, θ yields forms with sign −1 in the
functional equation, which correspond to Jacobi forms, which lift by
Gritsenko to paramodular forms with sign +1 in the functional equation.
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SO(5) and paramodular forms 14

The subspace of non-lifts
Assuming Ibukiyama Conjecture we let M0(L) be the subspace
of M(L) spanned by eigenforms which correspond to non-lifts.
With Hein and Ladd we noted the following
Proposition
We have M0(L) ⊆ ker θ.

We expect equality to hold in general, and we do not know any
example where it fails, but we cannot rule out the possibility of
some linear relation between theta series for a different reason.

I am inclined to think if the latter happens it might correspond to
classical modular forms of weight 4, with sign −1 in the functional
equation, for which the central derivative vanishes.
Is there any such form? I could not find one.
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I will discuss the paramodular non-lift of weight 3 and level 61.
This is the same as example 3.5.5 in Hein’s thesis, although
the order of the quadratic forms is different. We start with

Q1 = x2 + y 2 + z2 + 8w2 + t2 + xy + xz + yw

a quinary quadratic form of discriminant 61.
We compute its 2-neighbours, there are 15 = 23 + 22 + 2+ 1,
of which 7 are equivalent to Q1, 4 to Q2 and 4 to Q3. Here

Q2 = x2 + y2 + z2 + 3w2 + 3t2 + xy + xw + yw + zw − xt − yt − 3wt
Q3 = x2 + y2 + z2 + 2w2 + 3t2 + xy + xt − wt

We keep computing 2-neighbours of Q2, Q3, etc. until we
“close the graph”. Note that this will span the whole genus of
Q1 because there is only one spinor genus in this case.
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This procedure gives explicit representatives for the 8 classes
in the genus of Q1 and the matrix of the Hecke operator t2,1.
By taking theta series we obtain 8 classical modular forms of
weight 5/2 and level 4 · 61. We verify ker θ has dimension 1,
with eigenvalue −7 for t2,1.
The characteristic polynomial of t2,1 factors as

(x − 15) · (x + 7) · (degree 6 irreducible)

The first factor corresponds to the Eisenstein eigenform, the
second factor corresponds to ker θ, and the third factor
corresponds to a classical modular form of weight 4.
Since there are no modular forms of weight 4, level 61, with
rational eigenvalues, we confirm that ker θ is a non-lift.
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Our second problem is computing the L-function.
Suppose we want the Dirichlet coefficients up to a certain
bound X . For this we need to compute the eigenvalues of tp,1
for p up to X and those of tp,2 for p up to

√
X .

Since the number of p-neighbours needed for tp,1 is O(p3),
while the number of p-neighbours needed for tp,2 is O(p4), the
former will dominate the computation.
For our form, the eigenvalues of tp,2 for p < 100 are listed in
Hein’s thesis, enough for Dirichlet coefficients up to 10000.
We want the eigenvalues of tp,1 for all p up to some X .
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Two tricks
Computing tp,1 requires iterating over p-neighbours, of which
there are O(p3). For each one the expensive step is to
determine in which class it is. A priori this requires testing for
isometry with (on average) half the classes in the genus.
For our case we can check in advance that the 8 classes in the
genus of Q1 can be distinguished by the first 3 coefficients of
their theta series. Hence determining the class of a neighbour
is a simple matter of computing 3 coefficients of its theta
series and a table lookup.
Second: a linear algebra trick means that we don’t need to
compute the p-neighbours for every class. Since we already
know we are dealing with a (multiplicity one) eigenform, it is
enough to compute the p-neighbours for one class (properly
chosen), then project onto the eigenform.
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Computation
Using those two tricks I wrote a PARI/GP program which
computes the p-neighbours for Q3, and then it recovers from
this the eigenvalue of tp,1 for our eigenform.
It took ∼ 1100 cpu-hours to compute for all p up to 1000,
which took about a week using a workstation.
it took ∼ 500 cpu-days to compute for all p in (1000,1700),
which took a few days using a small cluster.
For example: the eigenvalue for t1699,1 is 8495 (∼ 10 cpu-days).

Some estimates:
I For all p in (1700,2000) ∼ 500 cpu-days.
I For all p in (2000,4000) ∼ 50 cpu-years.
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Open problems

I Construct forms with sign −1 in the functional equation
As explained here, the method seems to construct only
forms with sign +1 in the functional equation.

I Exhaustive enumeration
Requires theory (e.g. proving Ibukiyama’s Conjecture).

I Explicit lifting
Can we obtain the Fourier coefficients of the paramodular
form given a corresponding orthogonal modular form?
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Epilogue: congruences
The characteristic polynomial of t2,1 factors as

(x − 15) · (x + 7) · f (x)

Let v0 be a (primitive) eigenvector with eigenvalue −7, which
corresponds to our non-lift eigenform and it spans ker θ.
Now let K = Q(a) where a is a root of f . Then we can
choose, by suitable normalization, an eigenvector va with
eigenvalue a such that v0 ≡ va (mod p43), where p43 is a prime
in K of norm 43, namely the one generated by 43 and a + 7.
Note that a ≡ −7 (mod p43). In fact it follows from v0 ≡ va
(mod p43) that all the eigenvalues of v0 and va are congruent
modulo p43. In this way we can find and prove congruences of
the first type mentioned by Neil in the project pre-proposal.
Proving congruences of the second type seems more difficult.
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